Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Technology»Where Do High-Energy Cosmic Rays Come From? A Star’s Last
    Technology

    Where Do High-Energy Cosmic Rays Come From? A Star’s Last

    By AdminSeptember 5, 2022
    Facebook Twitter Pinterest LinkedIn Tumblr Email

    Gamma rays from this supernova remnant have been seen by telescopes since 2007, but exceptionally energetic light wasn’t detected until 2020, when it was picked up by the HAWC Observatory in Mexico, piquing the interest of scientists hunting for galactic PeVatrons. When gamma rays reach our atmosphere, they can produce showers of charged particles that can be measured by telescopes on the ground. With data from HAWC, scientists were able to work backward and determine that these showers came from gamma rays emanating from the supernova remnant. But they were unable to say whether the light was generated by protons or speedy electrons—which can also radiate gamma rays, as well as lower-energy x-rays and radio waves.

    To prove that PeV protons were the culprits, Fang’s research team compiled data across a broad range of energies and wavelengths that had been collected by 10 different observatories over the past decade. Then they turned to computer simulations. By tweaking different values, like the strength of the magnetic field or the density of the gas cloud, the researchers tried to reproduce the conditions necessary to account for all the different wavelengths of light they had observed. No matter what they adjusted, electrons couldn’t be the only source. Their simulations would only match the highest energy data if they included PeV protons as an additional source of light.

    “We were able to exclude that this emission is dominantly produced by electrons because the spectrum we got out just wouldn’t match the observations,” says Henrike Fleischhack, an astronomer at the Catholic University of America who had first attempted this analysis two years ago with just the HAWC data set. Doing a multiwavelength analysis was key, Fleischhack says, because it allowed them to show, for example, that increasing the number of electrons at one wavelength led to a mismatch between data and simulation at another wavelength—meaning the only way to explain the full spectrum of light was with the presence of PeV protons.

    “The result required a very careful attention to the energy budget,” says David Saltzberg, an astrophysicist at the University of California Los Angeles who was not involved in the work. “What this really shows is that you need many experiments, and many observatories, to answer the big questions.”

    Looking ahead, Fang is hopeful that more supernova remnant PeVatrons will be found, which will help them figure out if this discovery is unique, or if all stellar corpses have the ability to accelerate particles to such speeds. “This could be the tip of the iceberg,” she says. Up-and-coming instruments like the Cherenkov Telescope Array, a gamma-ray observatory with over 100 telescopes being erected in Chile and Spain, may even be able to locate PeVatrons beyond our own galaxy.

    Saltzberg also believes that next-generation experiments should be able to see neutrinos (tiny, neutral particles that can also result when pions decay) arriving from supernova remnants. Detecting these with the IceCube Neutrino Observatory, which hunts for their traces at the South Pole, would be even more of a smoking gun proving that these sites are PeVatrons because it would indicate the presence of pions. And Fang agrees: “It’ll be fantastic if telescopes like IceCube can see neutrinos directly from the sources because neutrinos are clean probes of proton interactions—they cannot be made by electrons.”

    Ultimately, finding the PeVatrons of our universe is crucial for gleaning just how the relics of stellar death pave the way for new stars to be born—and how the highest-energy particles help fuel this cosmic cycle. Cosmic rays influence pressure and temperature, drive galactic winds, and ionize molecules in star-fertile regions like supernova remnants. Some of those stars may go on to form their own planets or one day explode into supernovas themselves, commencing the process all over again.

    “Studying cosmic rays is almost as important to understanding the origins of life as studying exoplanets, or anything else,” Kerr says. “It’s all an energetic system that’s very complicated. And we’re just now coming to understand it.”

    Read The Full Article Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    At Least 750 US Hospitals Faced Disruptions During Last Year’s CrowdStrike Outage, Study Finds

    July 19, 2025

    Sources: at least six of China's biggest VC firms are targeting a combined $2B in new USD-denominated funds to allow overseas investment in Chinese startups (Bloomberg)

    July 19, 2025

    Adobe Upgrades Firefly Video Model With New Tools and Improved Motion Generation

    July 18, 2025

    ICE Is Getting Unprecedented Access to Medicaid Data

    July 18, 2025

    OpenAI debuts ChatGPT Agent, which can control an entire computer and perform multi-step tasks, powered by a new dedicated model, rolling out to paid users (Hayden Field/The Verge)

    July 17, 2025

    iPhone Models With China-Made Displays Reportedly Face Ban in the US; Apple Says ‘No Effect’ on Products

    July 17, 2025
    popular posts

    Books & Looks Podcast: Assassination Conspiracy: What Really Happened to

    9 Albums Out This Week You Should Listen to Now

    Iron Age arrow found on Norway mountain still has feather

    ‘Below Deck’: Captain Lee Rosbach on Milestone Season 10 &

    Nanotechnology paint provides brilliant colour that doesn’t fade

    Melissa Barrera Joins Radio Silence’s Universal Monster Movie

    Foo Fighters’ Chris Shiflett Wore a Mall-Made ‘Randy Rhoads Is

    Categories
    • Books (3,297)
    • Cover Story (5)
    • Events (19)
    • Fashion (2,457)
    • Interviews (43)
    • Movies (2,596)
    • Music (2,875)
    • News (155)
    • Politics (2)
    • Science (4,446)
    • Technology (2,589)
    • Television (3,319)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT