Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»Sparse, small, but diverse neural connections help make perception reliable,
    Science

    Sparse, small, but diverse neural connections help make perception reliable,

    By AdminFebruary 19, 2023
    Facebook Twitter Pinterest LinkedIn Tumblr Email
    Sparse, small, but diverse neural connections help make perception reliable,

    The brain’s cerebral cortex produces perception based on the sensory information it’s fed through a region called the thalamus.

    “How the thalamus communicates with the cortex in a fundamental feature of how the brain interprets the world,” said Elly Nedivi, William R. and Linda R. Young Professor in The Picower Institute for Learning and Memory at MIT. Despite the importance of thalamic input to the cortex, neuroscientists have struggled to understand how it works so well given the relative paucity of observed connections, or “synapses,” between the two regions.

    To help close this knowledge gap, Nedivi assembled a collaboration within and beyond MIT to apply several innovative methods. In a new study in Nature Neuroscience, the team reports that thalamic inputs into superficial layers of the cortex are not only rare, but also surprisingly weak, and quite diverse in their distribution patterns. Despite this, they are reliable and efficient representatives of information in the aggregate, and their diversity is what underlies these advantages.

    Essentially, by meticulously mapping every thalamic synapse on 15 neurons in layer 2/3 of the visual cortex in mice and then modeling how that input affected each neuron’s processing of visual information, the team found that wide variations in the number and arrangement of thalamic synapses made them differentially sensitive to visual stimulus features. While individual neurons therefore couldn’t reliably interpret all aspects of the stimulus, a small population of them could together reliably and efficiently assemble the overall picture.

    “It seems this heterogeneity is not a bug, it’s a feature that provides not only a cost benefit, but also confers flexibility and robustness to perturbation” said Nedivi, corresponding author of the study and a member of MIT’s faculty in the Departments of Biology and Brain and Cognitive Sciences.

    Aygul Balcioglu, the research scientist in Nedivi’s lab who led the work, added that the research has created a way for neuroscientists to track all the many individual inputs a cell receives as that input is happening.

    “Thousands of information inputs pour into a single brain cell. The brain cell then interprets all that information before it communicates its own response to the next brain cell,” Balcioglu said. “What is new and we feel exciting is we can now reliably describe the identity and the characteristics of those inputs, as different inputs and characteristics convey different information to a given brain cell. Our techniques give us the ability to describe in living animals where in the structure of the single cell what kind of information gets incorporated. This was not possible until now.”

    ‘MAP’ping and modeling

    Nedivi and Balcioglu’s team chose layer 2/3 of the cortex because tthis layer is where there is relatively high flexibility or “plasticity,” even in the adult brain. Yet, thalamic innervation there has rarely been characterized. Moreover, Nedivi said, even though the model organism for the study was mice, those layers are the ones that have thickened the most over the course of evolution, and therefore play especially important roles in the human cortex.

    Precisely mapping all the thalamic innervation onto entire neurons in living, perceiving mice is so daunting it’s never been done.

    To get started the team used a technique established in Nedivi’s lab that enables observing whole cortical neurons under a two-photon microscope using three different color tags in the same cell simultaneously, except in this case, they used one of the colors to label thalamic inputs contacting the labeled cortical neurons. Whereever the color of those thalamic inputs overlapped with the color labeling excitatory synapses on the cortical neurons that revealed the location of putative thalamic inputs onto the cortical neurons.

    Two-photon microscopes offer deep looks into living tissues, but their resolution is not sufficient to confirm that the overlapping labels are indeed synaptic contacts. To confirm their first indications of thalamic inputs, the team turned to a technique called MAP invented in The Picower Institute lab of MIT Chemical Engineering Associate Professor Kwanghun Chung. MAP physically enlarges tissue in the lab, effectively increasing the resolution of standard microscopes. Rebecca Gillani, a postdoc in the Nedivi lab, with help from Taeyun Ku, a Chung Lab postdoc, was able to combine the new labeling and MAP to definitely resolve, count, map, and even measure the size of all thalamic-cortical synapses onto entire neurons.

    The analysis revealed that the thalamic inputs were rather small (typically presumed to also be weak and maybe temporary), and accounted for between 2 and 10 percent of the excitatory synapses on individual visual cortex neurons. The variance in thalamic synapse numbers was not just at a cellular level, but also across different “dendrite” branches of individual cells, accounting for anywhere between zero and nearly half the synapses on a given branch.

    “Wisdom of the crowd”

    These facts presented Nedivi’s team with a conundrum. If the thalamic inputs were weak, sparse and widely varying, not only across neurons but even across each neuron’s dendrites, then how good could they be for reliable information transfer?

    To help solve the riddle, Nedivi turned to colleague Idan Segev, a professor at Hebrew University in Jerusalem specializing in computational neuroscience. Segev and his student Michael Doron used the Nedivi lab’s detailed anatomical measurements and physiological information from the Allen Brain Atlas to create a biophysically faithful model of the cortical neurons.

    Segev’s model showed that when the cells were fed visual information (the simulated signals of watching a grating go past the eyes) their electrical responses varied based on how their thalamic input varied. Some cells perked up more than others in response to different aspects of the visual information, such ascontrast or shape, but no single cell revealed much about the overall picture. But with about 20 cells together, the whole visual input could be decoded from their combined activity — a so-called “wisdom of the crowd.”

    Notably, Segev compared the performance of cells with the weak, sparse and varying input akin to what Nedivi’s lab measured, to the performance of a group of cells that all acted like the best single cell of the lot. Up to about 5,000 total synapses, the “best” cell group delivered more informative results but after that level, the small, weak and diverse group actually performed better. In the race to represent the total visual input with at least 90 percent accuracy, the small weak and diverse group reached that level with about 6,700 synapses while the “best” cell group needed more than 7,900.

    “Thus heterogeneity imparts a cost reduction in terms of the number of synapses required for accurate readout of visual features,” the authors wrote.

    Nedivi said the study raises tantalizing implications regarding how thalamic input into the cortex works. One, she said, is that given the small size of thalamic synapses they are likely to exhibit significant “plasticity.” Another is that the surprising benefit of diversity may be a general feature, not just a special case for visual input in layer 2/ 3. Further studies, however, are needed to know for sure.

    In addition to Nedivi, Balcioglu, Gillani, Ku, Chung, Segev and Doron, other authors are Kendyll Burnell and Alev Erisir.

    The National Eye Institute of the National Institutes of Health, the Office of Naval Research, and the JPB Foundation funded the study.

    Read The Full Article Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Failed Soviet probe will soon crash to Earth – and we don’t know where

    May 9, 2025

    After 170 years, Thoreau’s river observations inform our changing climate

    May 8, 2025

    World’s first silicon-based quantum computer is small enough to plug into a regular power socket

    May 7, 2025

    Nothing is stronger than quantum connections – and now we know why

    May 7, 2025

    Astronomers observe the cooling process of a young stellar object following an accretion burst

    May 6, 2025

    ‘Titanic: The Digital Resurrection’ documentary sheds light on night ship sank

    May 6, 2025
    popular posts

    Prince Harry Addresses Meghan Markle Divorce Rumors

    Ukraine Kakhovka dam explosion: Flooding is devastating wildlife

    Oppo A98 Tipped to Feature Snapdragon 778G SoC, 5,000mAh Battery

    8 Unputdownable Authors Like Ali Hazelwood

    Elon Musk’s SpaceX Gets Approval to Use Starlink Satellite Internet

    The 10 Best Jones Road Products, Tried & Tested

    2024’s Best Rom Com & Romance Books (New & Anticipated)

    Categories
    • Books (3,212)
    • Cover Story (2)
    • Events (18)
    • Fashion (2,381)
    • Interviews (41)
    • Movies (2,511)
    • Music (2,789)
    • News (153)
    • Science (4,362)
    • Technology (2,503)
    • Television (3,234)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT