Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»New Bay Area maps show hidden flood risk from sea
    Science

    New Bay Area maps show hidden flood risk from sea

    By AdminFebruary 15, 2023
    Facebook Twitter Pinterest LinkedIn Tumblr Email
    New Bay Area maps show hidden flood risk from sea

    Example Data Gap Area in Marin County. Credit: SHALLOW GROUNDWATER RESPONSE TO SEA-LEVEL RISE: Alameda, Marin, San Francisco, and San Mateo Counties (2023)

    Amid dramatic ocean swells and drenching atmospheric rivers, a new report lays bare a hidden aspect of sea level rise that has been exacerbating flooding in the Bay Area.

    The report, which was released Tuesday, maps areas that could flood from groundwater hovering just a few feet, or even inches below ground. This layer of water gets pushed upward as denser water from the ocean moves inland from rising tides. On its way up, even before the water breaks the surface, it can seep into the cracks of basements, infiltrate plumbing, or, even more insidiously, re-mobilize toxic chemicals buried underground.

    Communities that consider themselves “safe” from sea level rise might need to think otherwise, said Kris May, a lead author of the report and founder of Pathways Climate Institute, a research-based consulting firm in San Francisco that helps cities adapt to climate change.

    “I started working on sea level rise, then I went into extreme precipitation, and then groundwater … but it’s all connected,” May said. She noted that hot spots where the soil is already saturated with rising groundwater were some of the first to flood when a recent series of atmospheric rivers dumped record rainfall onto California: “These huge storms really highlight the magnitude of the risk.”

    The new findings are the result of an unprecedented joint effort by May, the San Francisco Estuary Institute (SFEI), UC Berkeley and a wide-ranging team of regulators, building officials, and flood-control agencies to identify where the groundwater along the bay shoreline is close to, or already breaking, the surface. A set of searchable maps, available online to the public, zooms in on Alameda, Marin, San Francisco and San Mateo counties—the first of many jurisdictions that researchers hope will undergo this intensive data-refining process.

    The maps build on a new but growing body of research. In 2020, another study led by the U.S. Geological Survey laid the groundwork for this issue along California’s 1,200-mile coast, and state toxic substances control officials have since started their own mapping efforts to better understand how rising groundwater might affect contaminated land.

    Similar research into vulnerable communities in Southern California is now also being conducted by a team led by Cal State Long Beach and Cal State Northridge.

    This emerging flood risk raises many tough questions, but the data so far make clear the need for urgent action.

    “We really need to focus on where contaminants may be mobilized by rising groundwater, because that could have an immediate impact on a 6-year-old, or a pregnant woman, or someone who has extra vulnerability in their immune system,” said Kristina Hill, a UC Berkeley researcher who has been particularly concerned about underserved communities like Marin City and historically industrial areas like East Oakland, where much of the soil is contaminated. “This [remobilization] could be happening now while it’s wet outside.”

    When talking about groundwater, there are two types to keep in mind: One, the kind researchers are now worried about, is the unconfined water that gathers in the pore spaces of soil very close to the surface. This is the water that runs off streets and soaks into the ground. The other type, confined in aquifers many hundreds of feet deep, is the water that we tap for drinking.

    When the tide moves inland, the shallow freshwater tends to float on top of the denser saltwater—and gets pushed upward toward the surface as sea levels rise. Because the shallow groundwater is not consumed, few people have studied this layer of water in California.

    Hill, who directs the Institute of Urban and Regional Development at UC Berkeley, first realized almost a decade ago that this shallow groundwater layer had been overlooked in sea level rise conversations. Together with May and Ellen Plane, who is now an environmental scientist at SFEI, she analyzed data from 10,000 wells across the Bay Area and concluded more than twice as much land could flood from groundwater as the ocean continued to rise.

    Then, in a remarkable move to turn these first approximation studies into data that government agencies would actually use, the researchers called on the officials themselves to help fill in the data gaps. City and county staff tracked down geotechnical reports and other possibly useful records that had been archived in various (and often siloed) departments. They sifted through hundreds of PDFs and spreadsheets to compile all the underground data that had been gathered for construction permits and projects.

    Public works staff then vetted the updated maps with their own observations—such as storm drains that back up during high tide and roads that tend to flood even when it’s not pouring.

    Patterns emerged. Many of the communities most exposed to flooding were built along historical creeks or on top of filled-in wetlands. When you overlay 5.5 feet of sea level rise on the map, the water is projected to move back in to essentially every wetland area that has been filled.

    Officials in San Francisco are already taking this data into account as they consider new building projects. Other cities and counties are starting to rethink their flood-protection options—a traditional levee or seawall, after all, would do nothing to stop the groundwater as it moves with the rising sea.

    Ultimately, officials need to figure out what to do with all the contaminated sites along the bay that are still awaiting cleanup—or those that need to be further remediated, said Hill, who has been finalizing another set of maps that will show where, and in which direction, rising groundwater might remobilize harmful chemicals underground. The oft-used approach of “capping” a toxic waste site rather than actually removing the contamination from the soil, for example, may no longer be sufficient.

    Regulators at the San Francisco Bay Regional Water Quality Control Board have been following all this research with great interest and are already diving into the updated maps, said Assistant Executive Officer Lisa Horowitz McCann. The board recently ordered 16 bayfront landfills to account for groundwater rise in their long-term flood protection plans, and caseworkers are now going through hundreds of cases to figure out which sites need further action.

    “This data further empowers—and actually legally supports—stronger actions that we can take,” Horowitz McCann said. “We’re looking at a bigger universe of cases now.”

    Researchers hope to continue this mapping work for the rest of the Bay Area. Next up is Contra Costa County in the East Bay, where a number of historically contaminated sites are being considered for redevelopment along the industrialized shoreline of Richmond.

    A lot more work also needs to be done to understand what the actual damage will look like for gas lines, septic systems, foundations and other buried infrastructure, said Patrick Barnard, whose research team at the U.S. Geological Survey has done extensive flood modeling that is used by officials across the state.

    “We need to start merging this information with the engineering world,” he said. “We built everything assuming the soil is dry… what does it mean to have it now be saturated all the time?”

    Barnard has also been studying what scientists are starting to call “compound extremes.” What do we do when seawater is trying to push in during a high tide, at the same time our rivers and storm drains are trying to flush excess rainwater into the ocean, and the ground can’t absorb anything because the groundwater is also flooding?

    “We looked at this in one case for the Napa River, and basically, your average annual winter storm could turn into the 100-year flood event if the ground is already saturated,” he said. “Add any amount of rain on top of it, even amounts that are not usually catastrophic … and they turn into catastrophic impacts.”

    For Chris Choo, the planning manager for Marin County, helping the latest mapping effort has been eye-opening in more ways than one. She has spent years helping communities plan for climate change, and the challenges have only gotten more complicated the more each disaster seems to overwhelm the next.

    “We went from drought, drought, drought and being really worried that we don’t have enough water, to suddenly, within two weeks, seeing the impacts of having way too much of it,” she said, noting not just the flooded roads that have kept her colleagues working around the clock, but also the powerful surf that ripped through much of California earlier this month and even split a pier in two.

    “People still tend to think of these things as isolated terrible things, rather than as part of a collective shift … in what the future might hold,” she said. “We live in nature and too often think of ourselves as separate from it … but nature is still very much in charge.”

    More information: Report: PDF

    2023 Los Angeles Times.
    Distributed by Tribune Content Agency, LLC.

    Citation: New Bay Area maps show hidden flood risk from sea level rise and groundwater (2023, January 17) retrieved 14 February 2023 from https://phys.org/news/2023-01-bay-area-hidden-sea-groundwater.html

    This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

    Read The Full Article Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    After 170 years, Thoreau’s river observations inform our changing climate

    May 8, 2025

    World’s first silicon-based quantum computer is small enough to plug into a regular power socket

    May 7, 2025

    Nothing is stronger than quantum connections – and now we know why

    May 7, 2025

    Astronomers observe the cooling process of a young stellar object following an accretion burst

    May 6, 2025

    ‘Titanic: The Digital Resurrection’ documentary sheds light on night ship sank

    May 6, 2025

    Ireland’s iconic megalithic tombs may have had an unexpected function

    May 5, 2025
    popular posts

    This Nonprofit Proves Games’ Power to Create Social Change

    The Most Popular Vintage Fashion Items to Shop, According to

    Byron Lee Scott’s Harmony Dreamers Release New Full Length Album

    New medicine can create a new life for diabetes patients

    Supercooling of Earth’s inner core may finally reveal how old it is

    Nickelodeon All-Star Brawl’s Hugh Neutron DLC Is Out Now

    What ‘The Last of Us’ Season Premiere’s Final Moments Really Mean

    Categories
    • Books (3,211)
    • Cover Story (2)
    • Events (18)
    • Fashion (2,380)
    • Interviews (41)
    • Movies (2,510)
    • Music (2,788)
    • News (153)
    • Science (4,361)
    • Technology (2,502)
    • Television (3,233)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT