Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»Hint of Crack in Standard Model Vanishes in LHC Data
    Science

    Hint of Crack in Standard Model Vanishes in LHC Data

    By AdminDecember 28, 2022
    Facebook Twitter Pinterest LinkedIn Tumblr Email

    A once-promising hint of new physics from the Large Hadron Collider (LHC), the world’s largest particle accelerator, has melted away, quashing one of physicists’ best hopes for a major discovery.

    The apparent anomaly was an unexpected difference between the behaviour of electrons and that of their more-massive cousins, muons, when they arise from the decay of certain particles.

    But the latest results from the LHCb experiment at CERN—Europe’s particle-physics laboratory near Geneva, Switzerland, which hosts the LHC—suggest that electrons and muons are produced at the same rate after all.

    “My first impression is that the analysis is much more robust than before,” says Florencia Canelli, an experimental particle physicist at the University of Zurich in Switzerland who is a senior member of a separate LHC experiment. It has revealed how a number of surprising subtleties conspired to produce an apparent anomaly, she says.

    Renato Quagliani, an LHCb physicist at the Swiss Federal Institute of Technology in Lausanne, reported the results at CERN on 20 December, in a seminar that attracted more than 700 viewers online. The LHCb collaboration also posted two preprints on the arXiv repository.

    Unbalanced decay

    LHCb first reported a tenuous discrepancy in the production of muons and electrons in 2014. When collisions of protons produced massive particles called B mesons, these quickly decayed. The most frequent decay pattern produced another type of meson, called a kaon, plus pairs of particles and their antiparticles—either an electron and a positron or a muon and an antimuon. The standard model predicted that the two types of pair should occur with roughly the same frequency, but LHCb data suggested that the electron–positron pairs occurred more often.

    Particle-physics experiments frequently produce early results that slightly deviate from the standard model, but turn out to be statistical flukes as the experiments collect more data. But that didn’t happen this time. Instead, as time went on, the B-meson anomaly seemed to become more conspicuous, reaching a confidence level known as 3 sigma—although it still did not reach the level of significance often used to claim a discovery, which is 5 sigma. A number of related measurements on B mesons also revealed deviations from theoretical predictions based on the standard model of particle physics.

    The results reported this week included more data than the previous LHCb measurements of B-meson decays, and a more thorough study of possible confounding factors. The apparent discrepancies in the earlier measurements involving kaons turned out to be caused in part by misidentifying some other particles as electrons, says LHCb spokesperson Chris Parkes, a physicist at the University of Manchester, UK. Although LHC experiments are good at catching muons, electrons are trickier for them to detect.

    Refocusing the search

    The result is likely to disappoint many theorists who have spent time trying to come up with models that could explain the anomalies. “I’m sure people would have liked us to find a crack in the standard model,” says Parkes, but in the end, “you do the best analysis with the data you have, and you see what nature gives you”, he says. “It’s really how science works.”

    Although the latest result had been rumoured for months, its confirmation comes as a surprise, says Gino Isidori, a theoretical physicist at the University of Zurich who was at the CERN talk, because a coherent picture seemed to be emerging from related anomalies. This could have pointed to the existence of previously unseen elementary particles that affect the decay of B mesons. Isidori gives the LHCb collaboration credit for being “honest” in admitting that its previous analyses had problems, but he regrets that it took so long for the collaboration to find the issues.

    However, some other anomalies, including some recorded in B-meson decays that do not involve kaons, could still turn out to be real, Isidori adds. “Not all is lost.”

    Marcella Bona, an experimental physicist at Queen Mary University of London who is part of yet another LHC experiment, agrees. “It looks like theorists are already thinking about how to console themselves and refocus.”

    The remaining hopeful hints of new physics include a measurement that found the mass of a particle called the W boson to be greater than expected, announced in April. But a separate anomaly, also involving muons, could be going away. The muon’s magnetic moment had seemed to be stronger than predicted by the standard model, but the latest theoretical calculations suggest that it is not, after all. Instead, the discrepancy could have originated in miscalculations of the standard model’s predictions.

    This article is reproduced with permission and was first published on December 20 2022.

    Read The Full Article Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Your chance of having a boy or girl may not be 50/50

    July 19, 2025

    Crustal faulting generates key energy sources, study shows

    July 19, 2025

    Tuvalu residents prepare for world’s first planned migration of an entire nation — and climate change is to blame

    July 18, 2025

    AI demand could drive up US electricity bills – even if it fizzles

    July 18, 2025

    International study shows impact of social media on young people

    July 17, 2025

    Best spotting scopes in 2025 for birdspotting and wildlife watching

    July 17, 2025
    popular posts

    How Hanky Panky’s Debut Swimwear Measures Up Against Its World-Famous

    New research shows humans impact wolf packs in national parks

    Something in the Water 2023 Day 3 Canceled Due to

    Comic-Con Portraits of AEW, ‘Interview With the Vampire,’ ‘Archer’ &

    Your 2023 Guide To Bookish Holiday Gifts

    Are You a Lucid Dreamer?

    An Author Reflects on Life, Love & Living the Italian Villa Dream

    Categories
    • Books (3,297)
    • Cover Story (5)
    • Events (19)
    • Fashion (2,457)
    • Interviews (43)
    • Movies (2,596)
    • Music (2,875)
    • News (155)
    • Politics (2)
    • Science (4,446)
    • Technology (2,589)
    • Television (3,319)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT