Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»Smooth sailing for electrons in graphene: Measuring fluid-like flow at
    Science

    Smooth sailing for electrons in graphene: Measuring fluid-like flow at

    By AdminFebruary 24, 2023
    Facebook Twitter Pinterest LinkedIn Tumblr Email
    Smooth sailing for electrons in graphene: Measuring fluid-like flow at

    A heatmap of electron location in graphene shows that at the lower temperature (left panel), the electrons are more likely to bump into impurities (circles), with relatively fewer making it through the channel between impurities. At higher temperatures (right panel), electron flow shifts to being fluid-like. Fewer are stuck at the impurities and more flow through the channels. Credit: University of Wisconsin-Madison

    Physicists at the University of Wisconsin-Madison have directly measured the fluid-like flow of electrons in graphene at nanometer resolution for the first time. The results appear in the journal Science today.

    Graphene, an atom-thick sheet of carbon arranged in a honeycomb pattern, is an especially pure electrical conductor, making it an ideal material to study electron flow with very low resistance. Here, researchers intentionally add impurities at known distances, and find that electron flow changes from gas-like to fluid-like as the temperature rises.

    “All conductive materials contain impurities and imperfections that block electron flow, which causes resistance. Historically, people have taken a low-resolution approach to identifying where resistance comes from,” says Zach Krebs, a physics graduate student at UW-Madison and co-lead author of the study. “In this study, we image how charge flows around an impurity and actually see how that impurity blocks current and causes resistance, which is something that hasn’t been done before to distinguish gas-like and fluid-like electron flow.”

    The results have applications in developing new, low-resistance materials, where electrical transport would be more efficient.

    The study used a technique known as scanning tunneling potentiometry (STP) and the 2D material graphene. The researchers intentionally introduced obstacles in the graphene, spaced at controlled distances, and then applied a current across the sheet. Using STP, they measured the voltage with nanometer resolution at all points on the graphene, producing a 2D map of the electron flow pattern (higher voltage = more electrons). No matter the obstacle spacing, the drop in voltage through the channel was much lower at a higher temperature (77 Kelvin) vs. a lower temperature (4 Kelvin), indicating more electrons were passing through (lower resistance).

    “We did a quantitative analysis [of the voltage map] and found that at the higher temperature, the resistance is much lower in the channel. The electrons were flowing more freely and fluid-like,” Krebs says. “Graphene is so clean that we’re forcing the electrons to interact with each other before they interact with anything else, and that is crucial in getting them to behave like a fluid.”

    The rock and stream analogy

    At temperatures near absolute zero, electrons in graphene behave like a gas: they diffuse in all directions and are more likely to hit obstacles than they are to interact with each other. Resistance is higher, and electron flow is relatively inefficient.

    At higher temperatures—77 K, or minus 196 C—the fluid-like behavior of electron flow means they are interacting with each other more than they are hitting obstacles, flowing like water between two rocks in the middle of a stream. It is as if the electrons are communicating information about the obstacle to each other and diverting around the rocks. Resistance is lower, and electron flow is more efficient.

    Former UW-Madison graduate student Wyatt Behn is a co-first author on this study, conducted in physics professor Victor Brar’s group.

    More information: Zachary J. Krebs et al, Imaging the breaking of electrostatic dams in graphene for ballistic and viscous fluids, Science (2023). DOI: 10.1126/science.abm6073

    Provided by University of Wisconsin-Madison

    Citation: Smooth sailing for electrons in graphene: Measuring fluid-like flow at nanometer resolution (2023, February 16) retrieved 24 February 2023 from https://phys.org/news/2023-02-smooth-electrons-graphene-fluid-like-nanometer.html

    This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

    Read The Full Article Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Best sleep trackers 2025: From smart rings to Garmin watches

    July 20, 2025

    Your chance of having a boy or girl may not be 50/50

    July 19, 2025

    Crustal faulting generates key energy sources, study shows

    July 19, 2025

    Tuvalu residents prepare for world’s first planned migration of an entire nation — and climate change is to blame

    July 18, 2025

    AI demand could drive up US electricity bills – even if it fizzles

    July 18, 2025

    International study shows impact of social media on young people

    July 17, 2025
    popular posts

    How to Digitize Old Photos (We Compared Photo Scanning Apps

    Strange yellow glass found in Libyan desert may have formed

    Samsung Galaxy A04e Specifications Revealed via Official Website Listing

    Binance Creating Team to Help Elon Musk’s Twitter With Blockchain

    How female sex workers are reclaiming their on-screen image

    Ancient ‘Unknown’ Script Is Finally Deciphered

    Book Riot’s Deals of the Day for December 29, 2023

    Categories
    • Books (3,298)
    • Cover Story (5)
    • Events (19)
    • Fashion (2,457)
    • Interviews (43)
    • Movies (2,597)
    • Music (2,876)
    • News (155)
    • Politics (2)
    • Science (4,447)
    • Technology (2,590)
    • Television (3,320)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT