Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Technology»NASA’s DART Mission May Severely Deform Asteroid, Says Study
    Technology

    NASA’s DART Mission May Severely Deform Asteroid, Says Study

    By AdminAugust 2, 2022
    Facebook Twitter Pinterest LinkedIn Tumblr Email

    NASA’s Double Asteroid Redirection Test (DART) mission is the world’s first full-scale planetary defence test against potential asteroid impacts on Earth. Researchers now show that instead of leaving behind a relatively small crater, the impact of the DART spacecraft on its target could leave the asteroid near unrecognisable.

    A giant asteroid impact on the Earth likely caused the extinction of the dinosaurs, 66 million years ago. Currently no known asteroid poses an immediate threat. But if one day a large asteroid were to be discovered on a collision course with Earth, it might have to be deflected from its trajectory to prevent catastrophic consequences.

    Last November, the DART space probe of the US space agency NASA was launched as a first full-scale experiment of such a manoeuvre: Its mission is to collide with an asteroid and to deflect it from its orbit, in order to provide valuable information for the development of such a planetary defense system.

    In a new study published in The Planetary Science Journal, researchers of the University of Bern and the National Centre of Competence in Research (NCCR) PlanetS have simulated this impact with a new method. Their results indicate that it may deform its target far more severely than previously thought.

    Rubble instead of solid rock

    “Contrary to what one might imagine when picturing an asteroid, direct evidence from space missions like the Japanese space agency’s (JAXA) Hayabusa2 probe demonstrate that asteroid can have a very loose internal structure — similar to a pile of rubble — that is held together by gravitational interactions and small cohesive forces,” says study lead-author Sabina Raducan from the Institute of Physics and the National Centre of Competence in Research PlanetS at the University of Bern.

    Yet, previous simulations of the DART mission impact mostly assumed a much more solid interior of its asteroid target Dimorphos. “This could drastically change the outcome the collision of DART and Dimorphos, which is scheduled to take place in the coming September,” Raducan points out.

    Instead of leaving a relatively small crater on the 160 meter wide asteroid, DART’s impact at a speed of around 24,000kmph could completely deform Dimorphos. The asteroid could also be deflected much more strongly and larger amounts of material could be ejected from the impact than the previous estimates predicted.

    A prize winning new approach

    “One of the reasons that this scenario of a loose internal structure has so far not been thoroughly studied is that the necessary methods were not available,” study lead-author Sabina Raducan says.

    “Such impact conditions cannot be recreated in laboratory experiments and the relatively long and complex process of crater formation following such an impact — a matter of hours in the case of DART — made it impossible to realistically simulate these impact processes up to now,” according to the researcher.

    “With our novel modelling approach, which takes into account the propagation of the shock waves, the compaction and the subsequent flow of material, we were for the first time able to model the entire cratering process resulting from impacts on small, asteroids like Dimorphos,” Raducan reports. For this achievement, she was awarded by ESA and by the mayor of Nice at a workshop on the DART follow-up mission HERA.

    Widen horizon of expectations

    In 2024, the European Space Agency ESA will send a space probe to Dimorphos as part of the space mission HERA. The aim is to visually investigate the aftermath of the DART probe impact. “To get the most out of the HERA mission, we need to have a good understanding of potential outcomes of the DART impact,” says study co-author Martin Jutzi from the Institute of Physics and the National Centre of Competence in Research PlanetS. “Our work on the impact simulations adds an important potential scenario that requires us to widen our expectations in this regard. This is not only relevant in the context of planetary defense, but also adds an important piece to the puzzle of our understanding of asteroids in general,” Jutzi concludes.

    Read The Full Article Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    UAE-based Aqua 1 Foundation buys $100M worth of tokens from Trump's World Liberty Financial, becoming its largest individual investor ahead of Justin Sun (Muyao Shen/Bloomberg)

    June 26, 2025

    Nothing Phone 3 With Snapdragon 8s Gen 4 SoC Surfaces on Geekbench Ahead of Launch

    June 26, 2025

    How to Clean a Beer Glass for Perfect Pours

    June 25, 2025

    Andy Konwinski, co-founder of Databricks and Perplexity, launches the nonprofit Laude Institute, self-funded with $100M for grants to AI projects and labs (Mike Wheatley/SiliconANGLE)

    June 25, 2025

    Lenovo Chromebook Plus With MediaTek Kompanio Ultra 910, Google AI Features and Dolby Atmos Launched

    June 24, 2025

    Scientists Are Sending Cannabis Seeds to Space

    June 24, 2025
    popular posts

    Water detected on the surface of an asteroid for the

    The Story Behind Serena Williams’s US Open Outfit Nods to

    Plan 75 review – a film of haunting unease

    ‘Interview with the Vampire’: See Glitzy, Bloody First Trailer

    Missing Sub Passengers Believed Dead After Debris Found From Likely

    Capturing the Memories and Magic of Summer Sleepaway Camp

    Microsoft warns that attackers are injecting malware into ViewState, which manages state in ASP.NET web forms, using static machine keys found online (Sergiu Gatlan/BleepingComputer)

    Categories
    • Books (3,250)
    • Cover Story (2)
    • Events (18)
    • Fashion (2,419)
    • Interviews (43)
    • Movies (2,550)
    • Music (2,828)
    • News (154)
    • Science (4,400)
    • Technology (2,543)
    • Television (3,272)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT