Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»We’ve just doubled the number of gravitational waves we can find
    Science

    We’ve just doubled the number of gravitational waves we can find

    By AdminSeptember 19, 2024
    Facebook Twitter Pinterest LinkedIn Tumblr Email
    We’ve just doubled the number of gravitational waves we can find


    We’ve just doubled the number of gravitational waves we can find

    Gravitational wave detectors use laser beams in tubes that span kilometres

    The Virgo Collaboration

    Gravitational waves that span thousands to billions of miles can be obscured in our detectors by the smallest of quantum fluctuations that permeate space-time. But now, researchers at the Laser Interferometer Gravitational-Wave Observatory (LIGO) have found a way to beat this quantum noise. And as a result, they are finding nearly twice as many cosmic events as before.

    “We realised that quantum noise will be limiting us a long time ago. It’s not just a fancy [quantum] thing to demonstrate, it’s something that really affects the actual detector,” says Wenxuan Jia at the Massachusetts Institute of Technology.

    LIGO detects gravitational waves, ripples in the fabric of space-time created by dramatic cosmic events like collisions between black holes. To do so, it fires a laser beam along each of its two 4-kilometre-long arms, which sit perpendicular to each other. A passing gravitational wave squashes and expands the part of space-time where these arms reside, introducing a small difference between the distances travelled by the two beams.

    But that discrepancy is so tiny it can be hard to tell when it is caused by gravitational waves and when it is due to the nearly-imperceptible flickers of quantum fields that permeate all of space, including the laser light itself. The researchers found changing the quantum properties of the light could help them suppress the crackles of quantum fields and get a more distinct gravitational wave signal.

    They added a series of devices to the detector, including a special crystal and several lenses and mirrors, which all work together to “squeeze” LIGO’s light into a quantum state where correlations between light particles diminish the flickering.

    LIGO completed its first run with squeezed light in 2020, but the method only worked for gravitational waves with relatively high frequencies – those with lower frequencies actually produced more noisy signals than before. Jia and his colleagues modified the squeezing process to work equally well at both high and low frequencies before LIGO’s 2023 run. This change had a stunning effect: the number of gravitational waves it detected nearly doubled, effectively allowing the machine to reveal a larger part of our universe.

    “Pushing the boundaries of quantum measurement has pushed the boundaries of space-time measurement, which is truly a beautiful thing,” says Chad Hanna at the Pennsylvania State University. He says this advanced precision will enable LIGO to see black hole mergers “all the way back to the formation of the first stars”.

    Bruce Allen at the Max Planck Institute for Gravitational Physics in Germany says there are several new kinds of gravitational waves physicists would like to see with LIGO’s newfound precision. This includes those emitted constantly by bumpy neutron stars as they rotate, as opposed to the ones they emit when they collide with something, which has been the origin of most gravitational waves detected to date.

    The upgrade also opens the door for fully new discoveries, as it could help probe the gravitational wave background that permeates space-time. “Every time you increase the sensitivity [of your detectors], you increase your chances of encountering the unexpected,” says Allen.

    Topics:

    View Original Source Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Apollo astronauts discovered the moon is covered in tiny orange glass beads. Now we finally know why.

    June 17, 2025

    Earth’s mantle may have hidden plumes venting heat from its core

    June 16, 2025

    NZ has a vast sea territory but lags behind other nations in protecting the ocean

    June 16, 2025

    James Webb telescope discovers ‘a new kind of climate’ on Pluto, unlike anything else in our solar system

    June 15, 2025

    How a US agriculture agency became key in the fight against bird flu

    June 15, 2025

    Chatbots easily tricked; better strength training; dynamics of a neural ‘reward map’

    June 14, 2025
    popular posts

    Key immune cells may help protect against inflammatory bowel disease

    NARUTO The Symphonic Experience’s 2025 North American Tour Dates

    High Bets Squander Players’ Chances in Latest Match

    MultiVersus Is Going Offline, Full Launch Coming Later

    The Future of Climate Activism Is Intergenerational—and on TikTok

    Where Grief Meets Grace on the Road to Understanding

    Instagram Has 2 Billion Monthly Active Users, Over 2 Billion

    Categories
    • Books (3,231)
    • Cover Story (2)
    • Events (18)
    • Fashion (2,400)
    • Interviews (43)
    • Movies (2,531)
    • Music (2,809)
    • News (153)
    • Science (4,381)
    • Technology (2,524)
    • Television (3,253)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT