Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»Watershed size plays major role in filtering pollutants, researchers find
    Science

    Watershed size plays major role in filtering pollutants, researchers find

    By AdminApril 9, 2022
    Facebook Twitter Pinterest LinkedIn Tumblr Email

    One of the important functions of a river is to remove some of the pollution that can end up in the water, like lawn fertilizers and harmful bacteria, before that water reaches sensitive downstream ecosystems such as estuaries and oceans. Research from the University of New Hampshire found that watershed size plays a major role in a river network’s ability to do this work. The findings further the understanding of which estuaries and coastal areas will be more impacted by human development in their watersheds and also casts a light on the intricacies of the global carbon cycle.

    “Just like the human body’s circulatory system moves blood, carries nutrients and filters waste, the planet’s river networks perform very similar functions,” said Wilfred Wollheim, professor of natural resources and the environment and the study’s lead author. “However, it is not well-known what controls how much pollutant filtration rivers can do, or whether it occurs primarily in small versus large rivers. When the human body size increases, the amount of energy it needs to do its work, or metabolism, also increases but at a slower rate. We wanted to see if something similar happens to aquatic metabolism or — as we discovered — something different.”

    In the study, recently published in Nature Communications, the researchers used a model that integrates what is known about how streams and rivers function and found that when the watershed area being drained by the river network increases, the rate at which rivers filter pollution doesn’t just increase at a linear rate — it increases even faster. They describe what they uncovered about watershed size and river function as superlinear scaling, saying it occurs because larger rivers contribute disproportionately to the pollution-filtering function of the entire network of aquatic ecosystems, which can include lakes, streams, rivers and wetlands.

    To keep as much pollution as possible out of estuaries and oceans, the research indicates that it is more important to manage land use and mitigate nonpoint source pollution — like runoff carrying fertilizers, herbicides, insecticides and toxic chemicals — in smaller watersheds, which are less able to filter pollutants than larger watersheds. It is also important to mitigate nonpoint pollution in parts of the watershed that are closer to an estuary or coastal area, where the system will have less of a chance to filter the pollutants before it reaches those critical areas.

    The research also reveals new information about the role of rivers in the global carbon cycle.

    “Land is known to be a net carbon sink, but recent research has found that a large proportion of this carbon actually ends up in rivers,” said Wollheim. “Our research shows that due to superlinear scaling, aquatic ecosystems of larger watersheds potentially release the carbon that makes its way into the water from land (and thought to be stored there) back to the atmosphere, while this would not be as evident in smaller watersheds.”

    The team hopes this new information about behavior of aquatic ecosystems and rivers will help design better pollution management strategies and improve the understanding of the feedback loop between the Earth’s ecosystems and atmosphere and how it impacts the rate of climate change.

    Co-authors include Andrew Robison also from UNH, Tamara Harms from the University of Alaska, Lauren Koenig and Ashley M. Helton from the University of Connecticut, Chao Song from Michigan State University, William Bowden from the University of Vermont and Jacques Finlay from the University of Minnesota.

    Story Source:

    Materials provided by University of New Hampshire. Original written by Sarah Schaier. Note: Content may be edited for style and length.

    Read The Full Article Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Failed Soviet probe will soon crash to Earth – and we don’t know where

    May 9, 2025

    After 170 years, Thoreau’s river observations inform our changing climate

    May 8, 2025

    World’s first silicon-based quantum computer is small enough to plug into a regular power socket

    May 7, 2025

    Nothing is stronger than quantum connections – and now we know why

    May 7, 2025

    Astronomers observe the cooling process of a young stellar object following an accretion burst

    May 6, 2025

    ‘Titanic: The Digital Resurrection’ documentary sheds light on night ship sank

    May 6, 2025
    popular posts

    How to Get Tickets to Red Hot Chili Peppers and

    Dave Grohl and friends cover Randy Newman’s “I Love LA”

    ‘The Cleaning Lady’: Ramona Is out for Revenge for Arman,

    How to Avoid the Vicious Cycle of Social Media Use

    Twitch Attempts to Regain Streamers’ Trust After New Revenue Sharing

    Touch the Buffalo’s “Bodhicitta”

    ’90 Day Fiancé: Happily Ever After?’: Angela Pops Up on

    Categories
    • Books (3,212)
    • Cover Story (2)
    • Events (18)
    • Fashion (2,381)
    • Interviews (41)
    • Movies (2,511)
    • Music (2,789)
    • News (153)
    • Science (4,362)
    • Technology (2,505)
    • Television (3,234)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT