Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»Water determines magma depth, a key to accurate models of
    Science

    Water determines magma depth, a key to accurate models of

    By AdminApril 23, 2022
    Facebook Twitter Pinterest LinkedIn Tumblr Email

    Around the world, between 40 and 50 volcanoes are currently erupting or in states of unrest, and hundreds of millions of people are at risk of hazards posed by these potentially active volcanos. Yet, despite the profound hazards posed to human life and property by volcanic eruptions, humanity still cannot reliably and accurately predict them, and even when forecasts are accurately made by experts, they may not afford ample time for people to evacuate and make emergency preparations.

    Accurate and reliable predictions have remained an elusive target largely because volcanologists do not fully understand the natural dynamics and processes of the magma underneath a volcano before it finds its way to the surface. Now, the results of a new study led by volcanologist Dan Rasmussen, a Peter Buck Fellow at the Smithsonian’s National Museum of Natural History, may bring experts one step closer to accurately forecasting volcanic eruptions.

    The study, published today, March 10, in the journal Science, finds that, for the world’s most common type of volcano, magma with higher water content tends to be stored deeper in the Earth’s crust. The finding identifies what some scientists expect is the most important factor controlling the depth at which magma is stored.

    “This study connects the depth at which magma is stored to water, which is significant because water largely initiates and fuels eruptions,” Rasmussen said. He explained that water drives eruptions analogously to how carbon dioxide can make a shaken-up soda bottle explode.

    “With water dissolved in magma that is stored beneath a volcano, if there is a sudden decrease in pressure, like when a shaken soda bottle cap is suddenly opened, gas bubbles form and those cause the magma to rise and jet out the volcano, similar to when a soda shoots out of a bottle top,” Rasmussen said. “More water content in magma means more gas bubbles and potentially a more violent eruption.”

    “These results move us closer to understanding the physics and conditions of magma storage beneath volcanoes, and that is an essential ingredient for the kinds of detailed physics-based models necessary to more accurately forecast eruptions,” Rasmussen said.

    advertisement

    The study was completed through new field work and lab analyses in addition to reanalysis of existing data collected from past volcanic eruptions tracked by the Smithsonian’s Global Volcanism Program.

    Rasmussen began his research in 2015 while completing his doctorate at Columbia University’s Lamont-Doherty Earth Observatory with his advisor, volcanologist Terry Plank, who suggested he pursue the still-open question of why magma storage depth varies from one volcano to the next and what controls that depth.

    Along with a team that included geophysicist Diana Roman of the Carnegie Institution for Science, Rasmussen went into the field to collect volcanic material from eight volcanoes located in the rugged and remote Aleutian Islands of Alaska.

    The researchers focused on a particular geological setting when selecting volcanoes for this study: so-called arc volcanoes that occur at the intersection of two converging tectonic plates. Arc volcanoes, like those found in the Aleutians, are the most numerous type of volcano on Earth and comprise the entirety of the infamous “Ring of Fire” encircling the Pacific Plate, making them the most obvious target for improving predictive capacities.

    Using ships and helicopters, the team collected bits of volcanic ash from these eight volcanoes amid rough seas and, on the island of Unimak, the threat of giant brown bears. Volcanic ash was the primary target of the expedition because it can contain green crystals made of olivine — each one with a diameter of about 1 millimeter, about the thickness of a plastic ID card.

    advertisement

    Underground, these olivine crystals sometimes trap tiny bits of magma when they form. After an eruption sends these special olivine crystals to Earth’s surface, the magma inside them cools and becomes glass. By analyzing the chemical composition of these miniscule pieces of cooled magma from the inside of a volcano, the researchers were able to estimate the magma’s water content.

    After estimating the water content from the entrapped pieces of magma collected from six of the eight Aleutian volcanoes, the team then combined those data with other estimates of magmatic water content taken from the scientific literature for an additional 56 volcanoes from around the world. The final list of estimated magmatic water content spanned 3,856 individual samples from 62 volcanoes.

    To examine the relationship between the estimated water content of these magma reservoirs and their respective storage depths, the researchers scoured the scientific literature and created an accompanying list of 331 depth estimates for 112 volcanoes.

    Rasmussen said the Smithsonian’s Global Volcanism Program’s database “was key in compiling these lists because it’s a really good resource for eruption history, and we only wanted to consider volcanoes that had recently erupted.” Rasmussen and the research team focused on recent eruptions because magma reservoirs do not appear to move a lot following an eruption, and so any estimates of depth or water content that were made using recently erupted material have the highest likelihood of accurately reflecting the current state of the volcano’s magma reservoir.

    After years of field work, geochemical analysis and literature review, the team was able to plot the estimated magma storage depths for 28 volcanoes from around the world against their respective estimated magmatic water contents. The results were strikingly clear: a magma reservoir’s water content strongly correlated with its storage depth. In other words, magmas that contained more water tended to be stored deeper in the Earth’s crust.

    The study also shows that a magma’s water content is responsible for controlling its depth, rather than merely correlating to it. The team showed this causal relationship by detecting the presence of chemical tracers associated with the formation of water-containing magmas in Earth’s mantle.

    “If storage depth determined water content in magma, it could still create the correlation between water content and depth that we observed, but it wouldn’t produce the chemical tracers of the magma’s initial water content that we found,” Rasmussen said.

    As for how water content might determine magma storage depth, Rasmussen and his co-authors argue that it has to do with a process known as degassing in which the water mixed in with the magma forms bubbles of gas. When magma rising through the Earth’s crust begins to degas, it becomes more viscous, which the researchers suggest causes the magma’s ascent to slow and stall.

    The evidence that water content largely controls magma storage depth overturns the most widely accepted explanation in the field today, which contends that magma rises through cracks in Earth’s crust because the molten rock is more buoyant than the surrounding crust, settling at its storage depth because it reaches neutral buoyancy where magma is no more buoyant than its surroundings.

    Rasmussen said the next step for this research is to see if these findings hold for volcanoes in other geologic settings such as hot-spot volcanoes like the Hawaiian Islands or rift volcanoes like those in East Africa. Beyond this extension of the research, Rasmussen said an even larger question looms: “If magma water content controls magma storage depth, what controls magma water content?”

    Funding and support for this research were provided by the Smithsonian, the National Science Foundation, the Community Foundation for Southwest Washington and the U.S. Geological Survey.

    Read The Full Article Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    New IQ research shows why smarter people make better decisions

    June 26, 2025

    ‘God-king’ born from incest in ancient Ireland wasn’t a god or a king, new study finds

    June 26, 2025

    Generation Alpha’s coded language makes online bullying hard to detect

    June 25, 2025

    Pulsars could have tiny mountains

    June 25, 2025

    New ‘breathalyzer’ could detect signs of disease in human breath, scientists say

    June 24, 2025

    Mice with two fathers have their own offspring for the first time

    June 24, 2025
    popular posts

    ‘The Resort’ Team Talks Time Travel, Nostalgia & More in

    How to Buy an Electric Bike (2024): Classes, Range, Repairs

    Without a Doubt, These Are the Best Glowing Foundations Out

    The MANIAC review: A dark novel about the legendary John

    Some people whose brains flatline but survive can recall lucid

    Mudvayne Working on Their First New Music in 14 Years,

    Selena Gomez Defends Taylor Swift on TikTok of Hailey Bieber

    Categories
    • Books (3,250)
    • Cover Story (2)
    • Events (18)
    • Fashion (2,419)
    • Interviews (43)
    • Movies (2,550)
    • Music (2,828)
    • News (154)
    • Science (4,400)
    • Technology (2,543)
    • Television (3,272)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT