Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»Using cell phone GNSS Networks to monitor crustal deformation
    Science

    Using cell phone GNSS Networks to monitor crustal deformation

    By AdminApril 29, 2022
    Facebook Twitter Pinterest LinkedIn Tumblr Email

    A paper published February 9 in Earth Planets and Space by Japanese Earth Science researchers analyzed the potential of a dense Global Navigation Satellite System (GNSS) network, which is installed at cell phone base stations, to monitor crustal deformation as an early warning indicator of seismic activity. The results showed that data from a cell phone network can rival the precision of data from a government-run GNSS network, while providing more complete geographic coverage.

    Crustal deformation is monitored around plate boundaries, active faults, and volcanoes to assess the accumulation of strains that lead to significant seismic events. GNSS networks have been constructed worldwide in areas that are vulnerable to volcanoes and earthquakes, such as in Hawai’i, California, and Japan. Data from these networks can be analyzed in real time to serve in tsunami forecasting and earthquake early warning systems.

    Japan’s GNSS network (GEONET) is operated by the Geospatial Information Authority of Japan. While GEONET has been fundamental in earth science research, its layout of 20-25 kilometers on average between sites limits monitoring of crustal deformation for some areas. For example, magnitude 6-7 earthquakes on active faults in inland Japan have fault lengths of 20-40 kilometers; the GEONET site spacing is slightly insufficient to measure their deformation with suitable precision for use in predictive models.

    However, Japanese cell phone carriers have constructed GNSS networks to improve locational information for purposes like automated driving. The new study examines the potential of a GNSS network built by the carrier SoftBank Corporation to play a role in monitoring crustal deformation. With 3300 sites in Japan, this private company oversees 2.5 times the number of sites as the government GEONET system.

    “By utilizing these observation networks, we aim to understand crustal deformation phenomena in higher resolution and to search for unknown phenomena that have not been found so far,” explained study author Yusaku Ohta, a geoscientist and assistant professor at the Graduate School of Science, Tohoku University.

    The study used raw data provided by SoftBank GNSS from cell phone base stations to evaluate its quality in monitoring crustal deformation. Two datasets were analyzed, one from a seismically quiet nine-day period in September of 2020 in Japan’s Miyagi Prefecture, the other from a nine-day period that included a 7.3 magnitude earthquake off the Fukushima coast on February 13, 2021, in Fukushima Prefecture.

    The study authors found that SoftBank’s dense GNSS network can monitor crustal deformation with reasonable precision. “We have shown that crustal deformation can be monitored with an unprecedentedly high spatial resolution by the original, very dense GNSS observation networks of cell phone carriers that are being deployed for the advancement of location-based services,” said earth scientist Mako Ohzono, associate professor at Hokkaido University.

    Looking ahead, they project that combining the SoftBank sites with the government-run GEONET sites could yield better spatial resolution results for a more detailed fault model. In the study area of the Fukushima Prefecture, combining the networks would result in an average density of GNSS sites of one per 5.7 kilometers. “It indicates that these private sector GNSS observation networks can play a complementary role to GNSS networks operated by public organizations,” said Ohta.

    The study paved the way for considering synergy between public and private GNSS networks as a resource for seismic monitoring in Japan and elsewhere. “The results are important for understanding earthquake phenomena and volcanic activity, which can contribute to disaster prevention and mitigation,” noted Ohzono.

    Story Source:

    Materials provided by Tohoku University. Note: Content may be edited for style and length.

    Read The Full Article Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    How government use of AI could hurt democracy

    July 12, 2025

    Wildfire forces evacuation of part of Grand Canyon

    July 11, 2025

    1,600-year-old tomb of Maya city’s first ruler unearthed in Belize

    July 11, 2025

    Peculiar plant could help us reconstruct ancient Earth’s climate

    July 10, 2025

    Chemicals from turmeric and rhubarb could help fight antibiotic-resistant bacteria lurking in wastewater

    July 10, 2025

    Metformin may prevent severe morning sickness

    July 9, 2025
    popular posts

    Love Island: Sarah Hyland to Host Peacock Revamp

    Ghana digitized its address system

    Inside the Real-Life Malibu Barbie Café Opening in NYC and

    ‘Willow’ Series Debuts on Disney Plus

    Musings on Nature and Art, History and the Eternal, Home

    Justin Baldoni Updates Lawsuit, Adds Bullying Claims Based on Ryan Reynolds’ Nicepool

    James Gunn Teases Secret DC Project

    Categories
    • Books (3,282)
    • Cover Story (4)
    • Events (18)
    • Fashion (2,446)
    • Interviews (43)
    • Movies (2,581)
    • Music (2,859)
    • News (155)
    • Politics (1)
    • Science (4,431)
    • Technology (2,574)
    • Television (3,304)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT