Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»Unlocked enzyme structure shows how strigolactone hormone controls plant growth
    Science

    Unlocked enzyme structure shows how strigolactone hormone controls plant growth

    By AdminJune 11, 2022
    Facebook Twitter Pinterest LinkedIn Tumblr Email

    As sessile organisms, plants have to continually adapt their growth and architecture to the ever-changing environment. To do so, plants have evolved distinct molecular mechanisms to sense and respond to the environment and integrate the signals from outside with endogenous developmental programs.

    New research from Nitzan Shabek’s laboratory at the UC Davis College of Biological Sciences, published in Nature Plants, unravels the underlying mechanism of protein targeting and destruction in a specific plant hormone signaling pathway.

    “Our lab aims at deciphering sensing mechanisms in plants and understanding how specific enzymes function can be regulated at the molecular levels” said Shabek, assistant professor of biochemistry and structural biology in the Department of Plant Biology. “We have been studying a new plant hormone signal, strigolactone, that governs numerous processes of growth and development including branching and root architecture.”

    The work stems from a study by Shabek, published in Nature in 2018, unravelling molecular and structural changes in an enzyme, MAX2 (or D3) ubiquitin ligase. MAX2 was found in locked or unlocked forms that can recruit a strigolactone sensor, D14, and target for destruction a DNA transcriptional repressor complex, D53. Ubiquitins are small proteins, found in all eukaryotes, that “tag” other proteins for destruction within a cell.

    To find the key to unlock MAX2 and to better understand its molecular dynamics in plants, postdoctoral fellows Lior Tal and Malathy Palayam, with junior specialist Aleczander Young, used an approach that integrated advanced structural biology, biochemistry, and plant genetics.

    “We leveraged structure-guided approaches to systemically mutate MAX2 enzyme in Arabidopsis and created a MAX2 stuck in an unlocked form,” said Shabek, “some of these mutations were made by guiding CRISPR/Cas9 genome editing thus providing us a discovery platform to study and analyze the different signaling outputs and illuminate the role of MAX2 dynamics.”

    Regulating a massive gene network

    They found that in the unlocked conformation, MAX2 can target the repressor proteins and biochemically decorate them with small ubiquitin proteins, tagging them for destruction. Removing these repressors allows other genes to be expressed — activating a massive gene network that governs shoot branching, root architecture, leaf senescence, and symbiosis with fungi, Shabek said.

    Sending these repressors to the proteasome disposal complexes requires the enzyme to relock again. The team also showed that MAX2 not only target the repressors proteins, but once it is locked the strigolactone sensor itself gets destroyed, returning the system to its original state.

    Finally, the study uncovered the key to the lock, an organic acid metabolite that can directly trigger the conformational switch.

    “Beyond the implication in plants signaling, this is the first work that placed a primary metabolite as a direct new regulator of this type of ubiquitin ligase enzymes and will open new avenues of study in this direction,” Shabek said.

    Additional coauthors on the paper are specialist Mily Ron and Professor Anne Britt, Department of Plant Biology. The study was supported by NSF CAREER and EAGER grants to Shabek. X-ray crystallography data was obtained at the Advanced Light Source, Lawrence Berkeley National Laboratory, a U.S. Department of Energy user facility.

    Story Source:

    Materials provided by University of California – Davis. Original written by Andy Fell. Note: Content may be edited for style and length.

    Read The Full Article Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Research reveals missed opportunities to save George Floyd’s life

    May 25, 2025

    Pelican eel: The midnight zone ‘gulper’ with a giant mouth to swallow animals bigger than itself

    May 24, 2025

    Are microplastics in ultra-processed food harming your mental health?

    May 23, 2025

    Eldest daughters often carry the heaviest burdens: Insights from Madagascar

    May 21, 2025

    What’s hiding under Antarctica’s ice?

    May 12, 2025

    Failed Soviet probe will soon crash to Earth – and we don’t know where

    May 9, 2025
    popular posts

    The Chicest Over-50 Women Share the Denim Mistakes They’ll Never

    The Best Wireless Earbuds for Working Out

    We Tried the Viral and Affordable Freja Mercer Handbag

    Watch The Good Doctor Online: Season 6 Episode 21

    Chewing gum while pregnant linked to fewer premature births in

    12 Reasons to Shelve Your Books in Rainbow Order

    Look to What Kate Middleton Wore for Holiday Party Outfit

    Categories
    • Books (3,217)
    • Cover Story (2)
    • Events (18)
    • Fashion (2,386)
    • Interviews (43)
    • Movies (2,516)
    • Music (2,794)
    • News (153)
    • Science (4,367)
    • Technology (2,510)
    • Television (3,239)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT