Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»Topologically tuned terahertz on a nonlinear photonic chip
    Science

    Topologically tuned terahertz on a nonlinear photonic chip

    By AdminJune 5, 2022
    Facebook Twitter Pinterest LinkedIn Tumblr Email

    Experimental realization of topologically controlled THz localization. (a) Illustration of nonlinear generation and confinement of THz-waves in an SSH-type microstructure. The LN structure undergoes a transition from L-LD, through equidistant, to S-SD regions along the +z-axis, illustrated by colors shaded from orange into blue. The polarization of the THz electric field and that of the optical pump beam are all along the direction of the LN crystalline axis (z-axis). (b) Microscope image of the LN array structure fabricated by fs-laser writing. The thickness of the LN chip is 50 μm in the y-direction. The total length of the microstructure along the z-direction is L=6mm. d1 and d2 are the spacings between neighboring LN stripes corresponding to the coupling coefficients c1 and c2, respectively. At the dashed yellow line, z = L/2 and d1 = d2 = 55 μm, which leads to an equidistant structure. Credit: Light: Science & Applications (2022). DOI: 10.1038/s41377-022-00823-7

    Compact terahertz functional devices are highly useful for high-speed wireless communication, biochemical sensing and non-destructive inspection. However, controlled terahertz generation, alongside transport and detection is challenging for chip-scale devices, due to low coupling efficiency and absorption losses. In a new report now published in Nature: Light Science & Applications, Jiayi Wang, Shiai Xia and Ride Wang and a team of researchers in physics, biophysics, and nonlinear photonics, at the Nankai University, China and INRS-ENT, Canada, generated nonlinear and topologically tuned confinement of terahertz waves in an engineered lithium niobate chip. The team experimentally measured the band structures to provide direct visualization of the terahertz localization in the momentum space. The outcomes provide new possibilities to realize terahertz integrated circuits for advanced photonic applications.

    Tuning terahertz on a lithium niobate photonic chip

    The development of reliable terahertz technology is primarily driven by a high demand for applications including wireless communications

    signal processing and biosensing, as well as non-destructive evaluation. The lack of integrated functional devices in the terahertz range have, however, limited their applications, and it is challenging to guide terahertz wavelengths due to losses arising from critical features of the spectrum. Researchers have led tremendous efforts to explore diverse designs and approaches for terahertz sources via a variety of platforms, including metamaterials, nonlinear metasurfaces, plasmonic waves and wave mixing in ionic crystals and time-domain integration of terahertz pulses.

    In this work, Wang et al proposed and developed a scheme for nonlinear generation and topologically tuned confinement of terahertz waves to fully realize the phenomenon on a single lithium niobate photonic chip. The process relied on a photonic microstructure containing lithium niobate waveguide stripes that could undergo topologically trivial and nontrivial transitions. The team used femtosecond-laser writing technology to develop the construct with a topological defect at the central interface. They measured the terahertz field via pump-probe experiment to show tunable confinement along the chip, relative to the variation of the geometry of the photonic structure. The results provided a clear indication to terahertz-wave confinement as a result of topological protection.

    Eigenvalues and representative eigenmode distributions in the SSH-type LN topological structure. (a) Calculated eigenvalue distribution of the microstructure along the z-axis. The yellow line represents the equidistant structure at z = L/2 (d1 = d2 = 55 μm), which marks the phase transition point. The left side of the yellow line (z  L/2) indicates the S-SD region, where topologically nontrivial and trivial defect modes are marked by green and blue dots, respectively. Gray dots represent the bulk modes. b1 Topological defect mode around 0.3 THz in the L-LD structure at z = 0. b2 The mode around 0.3 THz in the equidistant structure at z = L/2. b3, b4 Topological trivial mode around 0.42 THz (b3) and nontrivial mode around 0.3 THz (b4) in the S-SD structure at z = L. Credit: Light: Science & Applications (2022). DOI: 10.1038/s41377-022-00823-7 Terahertz generation on a chip

    In physics, a standard technique for terahertz wave generation is based on optical rectification that can be induced via femtosecond laser pulses in second-order non-linear crystals. In the past four decades, scientists had developed a range of methods to improve terahertz generation efficiency, to activate a narrow terahertz bandwidth, and decrease the frequency decay in lithium niobate crystals. Researchers had also generated tunable terahertz pulses in nonlinear lithium niobate crystals via ultrashort laser pulses. Rapid enhancements in the field have led to new methods for THZ-wave localization and confinements. Wang et al employed a Su–Schrieffer–Heeger lattice-type photonic lattice on a lithium niobate chip to achieve tunable topological terahertz wave localization. The lattice provided a prototypical topological model with widespread demonstrations in photonics and plasmonics. Such models were previously applicable to generate robust, entangled photon pairs, to enhance nonlinear harmonic generation, realize topological lasing, and non-Hermitian topological states, aside from the terahertz wavelength regime.

    To realize the proposed terahertz field manipulation, Wang et al performed a series of experiments, with a typical pump-probe setup. During the experiments, the team used a femtosecond pump beam to generate terahertz waves confined the evolving waves within the chip instead of free space. The team extended the scheme to include integrated topological circuits in compact terahertz devices. They detected the waves by using a time-resolved imaging method, based on a phase contrast imaging method to monitor the refractive index change induced by terahertz waves. The outcomes indicated a topological defect, which was in good agreement with the calculations. The results clearly showed how the generated terahertz waves can be strongly confined near the center defect of the construct, away from the transition point. Wang et al corroborated the outcomes with numerical simulations, which were in good agreement.

    Experimental (top two rows) and numerical (bottom two rows) demonstrations of topologically controlled THz confinement in the LN chip from L-LD, through equidistant, to S-SD regions of the wedge-shaped SSH photonic lattice. (a–e) correspond to locations (A–E) marked in Fig. 1b. a1–e1 Measured spectra at the corresponding positions. a2–e2 Energy distribution of the modes showing different confinement of the generated THz waves in the LN chip. a3–e3 Simulated x−t diagrams showing the THz waves evolution in different regions, where a4–e4 are the corresponding spectra. The lattice sites are illustrated by white tick marks in a3–e3, and a in (a1, a4) is the lattice constant for the corresponding L-LD structure. Credit: Light: Science & Applications (2022). DOI: 10.1038/s41377-022-00823-7 Distinction between topologically nontrivial and trivial defect modes under chiral perturbations. (a1) Calculation of the eigenvalue distribution ε under 500 sets of off-diagonal perturbations in the L-LD structure. The red dots (forming a line) represent the eigenvalues associated to the topological mode and the gray dots show the distribution of the bulk modes. (a2) Simulation of the x−t diagram for the central defect excitation under perturbations. (a3) The corresponding spectrum of (a2). b1–b3 have the same layout as (a1–a3) but for the S-SD structure, where green and blue dots denote nontrivial and trivial defect modes, respectively. c Plot of p versus perturbation strength ξ, where p=nbulk/nall, with nbulk defined as the number of perturbation sets that result in coupling of the trivial defect mode with the bulk modes and nall as the total number of perturbation sets (in this case nall=500). Red and green lines illustrate the nontrivial modes in the L-LD and S-SD structures, respectively, while the blue line is for the trivial defect mode in the S-SD structure. Credit: Light: Science & Applications (2022). DOI: 10.1038/s41377-022-00823-7 Outlook

    In this way, Jiayi Wang, Shiai Xia and Ride Wang developed a scheme for nonlinear generation of topologically tuned terahertz wave confinement on a single photonic chip. The theory was in good agreement with the experimental observations to substantiate the distinctive features of terahertz topological states. The work provides a flexible and convenient platform to tune the confinement and topological properties of terahertz waves on demand, to open new avenues to implement versatile, stable and compact terahertz photonic integrated circuits, for a variety of applications, including future topology-driven photonic technology.

    Researchers develop broadband spintronic-metasurface terahertz emitters with tunable chirality More information: Jiayi Wang et al, Topologically tuned terahertz confinement in a nonlinear photonic chip, Light: Science & Applications (2022). DOI: 10.1038/s41377-022-00823-7

    Tadao Nagatsuma et al, Advances in terahertz communications accelerated by photonics, Nature Photonics (2016). DOI: 10.1038/nphoton.2016.65

    © 2022 Science X Network

    Citation: Topologically tuned terahertz on a nonlinear photonic chip (2022, June 1) retrieved 5 June 2022 from https://phys.org/news/2022-06-topologically-tuned-terahertz-nonlinear-photonic.html

    This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

    Read The Full Article Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Failed Soviet probe will soon crash to Earth – and we don’t know where

    May 9, 2025

    After 170 years, Thoreau’s river observations inform our changing climate

    May 8, 2025

    World’s first silicon-based quantum computer is small enough to plug into a regular power socket

    May 7, 2025

    Nothing is stronger than quantum connections – and now we know why

    May 7, 2025

    Astronomers observe the cooling process of a young stellar object following an accretion burst

    May 6, 2025

    ‘Titanic: The Digital Resurrection’ documentary sheds light on night ship sank

    May 6, 2025
    popular posts

    Lin-Manuel Miranda Is Working on ‘The Warriors’ Broadway Show

    Unicorn-like blind fish discovered in dark waters deep in Chinese

    Interview with Jordan Spicer, Author of Tales of Reverba: A

    The Story Behind How They Might Be Giants Built a

    Nintendo Switch 2 Price, Release Date, Specs & Games Update

    How the New Moon in Aquarius Will Shape Your Year

    J.Crew Is Popping Off—20 Chic New Arrivals I’ll Wear All

    Categories
    • Books (3,212)
    • Cover Story (2)
    • Events (18)
    • Fashion (2,381)
    • Interviews (41)
    • Movies (2,511)
    • Music (2,789)
    • News (153)
    • Science (4,362)
    • Technology (2,505)
    • Television (3,234)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT