Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»Technology advance paves way to more realistic 3D holograms for
    Science

    Technology advance paves way to more realistic 3D holograms for

    By AdminApril 14, 2023
    Facebook Twitter Pinterest LinkedIn Tumblr Email
    Technology advance paves way to more realistic 3D holograms for

    Researchers have developed a new way to create dynamic ultrahigh-density 3D holographic projections. By packing more details into a 3D image, this type of hologram could enable realistic representations of the world around us for use in virtual reality and other applications.

    “A 3D hologram can present real 3D scenes with continuous and fine features,” said Lei Gong, who led a research team from the University of Science and Technology of China. “For virtual reality, our method could be used with headset-based holographic displays to greatly improve the viewing angles, which would enhance the 3D viewing experience. It could also provide better 3D visuals without requiring a headset.”

    Producing a realistic-looking holographic display of 3D objects requires projecting images with a high pixel resolution onto a large number of successive planes, or layers, that are spaced closely together. This achieves high depth resolution, which is important for providing the depth cues that make the hologram look three dimensional.

    In Optica, Optica Publishing Group’s journal for high-impact research, Gong’s team and Chengwei Qiu’s research team at the National University of Singapore describe their new approach, called three-dimensional scattering-assisted dynamic holography (3D-SDH). They show that it can achieve a depth resolution more than three orders of magnitude greater than state-of-the-art methods for multiplane holographic projection.

    “Our new method overcomes two long-existing bottlenecks in current digital holographic techniques — low axial resolution and high interplane crosstalk — that prevent fine depth control of the hologram and thus limit the quality of the 3D display,” said Gong. “Our approach could also improve holography-based optical encryption by allowing more data to be encrypted in the hologram.”

    Producing more detailed holograms

    Creating a dynamic holographic projection typically involves using a spatial light modulator (SLM) to modulate the intensity and/or phase of a light beam. However, today’s holograms are limited in terms of quality because current SLM technology allows only a few low-resolution images to be projected onto sperate planes with low depth resolution.

    To overcome this problem, the researchers combined an SLM with a diffuser that enables multiple image planes to be separated by a much smaller amount without being constrained by the properties of the SLM. By also suppressing crosstalk between the planes and exploiting scattering of light and wavefront shaping, this setup enables ultrahigh-density 3D holographic projection.

    To test the new method, the researchers first used simulations to show that it could produce 3D reconstructions with a much smaller depth interval between each plane. For example, they were able to project a 3D rocket model with 125 successive image planes at a depth interval of 0.96 mm in a single 1000×1000-pixel hologram, compared to 32 image planes with a depth interval of 3.75 mm using another recently developed approach known as random vector-based computer-generated holography.

    To validate the concept experimentally, they built a prototype 3D-SDH projector to create dynamic 3D projections and compared this to a conventional state-of- the-art setup for 3D Fresnel computer-generated holography. They showed that 3D-SDH achieved an improvement in axial resolution of more than three orders of magnitude over the conventional counterpart.

    The 3D holograms the researchers demonstrated are all point-cloud 3D images, meaning they cannot present the solid body of a 3D object. Ultimately, the researchers would like to be able to project a collection of 3D objects with a hologram, which would require a higher pixel-count hologram and new algorithms.

    Read The Full Article Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Molecular coating cleans up noisy quantum light

    October 3, 2025

    Science history: Invention of the transistor ushers in the computing era — Oct. 3, 1950

    October 3, 2025

    Antarctica may have crossed a tipping point that leads to rising seas

    October 2, 2025

    Viewing teens more positively may help their school performance and strengthen family bonds

    October 2, 2025

    Bering Land Bridge emerged much later than we thought it did, new study finds

    October 1, 2025

    We finally know why a belly button becomes an ‘innie’

    October 1, 2025
    popular posts

    An interview with Google VP of Search Elizabeth Reid on AI Overviews' launch a year ago, the future of AI search, its impact on the ad revenue model, and more (Melissa Heikkilä/Financial Times)

    Emmanuelle review – anticlimactic and unerotic

    River sampling study shows impact of COVID-19 pandemic on London’s

    New Romance Books to Read

    José Feliciano’s ‘Feliz Navidad’ Lyrics

    Treating Mental Health as Part of Climate Disaster Recovery

    Fire Country Season 1 Episode 18 Review: Off the Rails

    Categories
    • Books (3,448)
    • Cover Story (8)
    • Events (19)
    • Fashion (2,548)
    • Interviews (45)
    • Movies (2,748)
    • Music (3,032)
    • News (161)
    • Politics (6)
    • Science (4,598)
    • Technology (2,743)
    • Television (3,473)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT