Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»Supercooling of Earth’s inner core may finally reveal how old it is
    Science

    Supercooling of Earth’s inner core may finally reveal how old it is

    By AdminSeptember 14, 2024
    Facebook Twitter Pinterest LinkedIn Tumblr Email
    Supercooling of Earth’s inner core may finally reveal how old it is


    Deep beneath our feet, at a staggering depth of over 5,100km, lies Earth’s inner core — a solid ball of iron and nickel that plays a crucial role in shaping the conditions we experience on the surface. In fact, without it we’d be unlikely to even exist.

    But despite its significance, it’s a bit of a puzzle how it formed and developed. We don’t even know how old it is. Luckily, mineral physics is bringing us closer to solving the mystery.

    The inner core is responsible for Earth’s magnetic field, which acts like a shield, protecting us from harmful solar radiation. This magnetic field might have been important for creating the conditions that allowed life to thrive billions of years ago.

    The Earth’s inner core was once liquid, but has turned solid over time. As the Earth gradually cools, the inner core expands outwards at the surrounding iron-rich liquid “freezes.” That said, it is still extremely hot, at least 5,000 Kelvin (K) (4726.85 degrees Celsius).

    This process of freezing releases elements, such as oxygen and carbon, which aren’t compatible with being in a hot solid. It creates a hot, buoyant liquid at the bottom of the outer core. The liquid rises into the liquid outer core and mixes with it, which creates electric currents (through “dynamo action”), which generates our magnetic field.

    Ever wondered what keeps the northern lights dancing in the sky? You can thank the inner core.

    Related: Why does Earth have magnetic poles?

    Get the world’s most fascinating discoveries delivered straight to your inbox.

    Cryptic crystallisation

    To understand how Earth’s magnetic field has evolved over its history, geophysicists use models that simulate the thermal state of the core and mantle.

    These models help us understand how heat is distributed and transferred within the Earth. They assume that the solid inner core first appeared when the liquid cooled to its melting point, taking this as the time when it began to freeze. The trouble is, that does not accurately reflect the process of freezing.

    Earth’s inner core in light yellow, with liquid in the outer core and magnetic field lines in black.  (Image credit: Alfred Wilson-Spencer, CC BY-SA)

    Scientists have therefore explored the process of “supercooling.” Supercooling is when a liquid is cooled below its freezing point without turning into a solid. This happens with water in the atmosphere, sometimes reaching minus 30 C before forming hail, and also with iron in Earth’s core.

    Calculations suggest that up to 1,000K of supercooling is actually required to freeze pure iron in the Earth’s core. Given that the conductivity of the core implies it cools at a rate of 100-200K per billion years, this presents a significant challenge. This level of supercooling implies that the core would have needed to be below its melting point for the entirety of its history (1,000 to 500 million years old), which presents additional complications.

    Since we cannot physically access the core — humans have only drilled 12km into the Earth — we rely almost entirely on seismology to understand our planet’s interior. The inner core was discovered in 1936, and its size (about 20% of Earth’s radius) is one of the best-constrained properties of the deep Earth. We use this information to estimate the core’s temperature, assuming that the boundary between solid and liquid represents the intersection of the melting point and core temperature.

    This assumption also helps us estimate the maximum extent of supercooling that could have taken place before the inner core began to form from a combined inner and outer core. If the core froze relatively recently, the current thermal state at the inner core–outer core boundary indicates how much the combined core might have been below its melting point when the inner core first began to freeze. This suggests that, at most, the core could have been supercooled by about 400K.

    This is at least double what seismology allows. If the core was supercooled by 1,000K before freezing, the inner core should be much larger than observed. Alternatively, if 1,000K is necessary for freezing and was never achieved, the inner core should not exist at all. Clearly, neither scenario is accurate, so what could be the explanation?

    Mineral physicists have tested pure iron and other mixtures to determine how much supercooling is needed to initiate the formation of the inner core. While these studies have not yet provided a definitive answer, there are promising advances.

    For example, we have learned that unexpected crystal structures and the presence of carbon may affect supercooling. These findings suggest that certain chemistry or structure that had previously not been considered might not require such an unreasonably large supercooling. If the core could freeze at less than 400K of supercooling, it can explain the presence of the inner core as we see it today.

    The implications of not understanding the formation of the inner core are far-reaching. Previous estimates of the inner core’s age range from 500 to 1,000 million years. But these do not account for the supercooling issue. Even a modest supercooling of 100K could mean the inner core is several hundred million years younger than previously thought.

    Understanding the signature of inner core formation in the paleomagnetic rock record — an archive of the Earth’s magnetic field — is crucial for those studying the impact of solar radiation on mass extinctions.

    Until we better understand the magnetic field’s history, we cannot fully determine its role in the emergence of habitable conditions and life.

    This edited article is republished from The Conversation under a Creative Commons license. Read the original article.

    View Original Source Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Thimerosal carries no health risks and is almost never used anyway. So why are anti-vaxxers obsessed with it?

    June 30, 2025

    Altered gut microbiome linked to fertility issues in people with PCOS

    June 30, 2025

    Cold baths, climate shelters as Southern Europe heat wave intensifies

    June 29, 2025

    Roman army camp found in Netherlands, beyond the empire’s frontier

    June 29, 2025

    X-ray boosting fabric could make mammograms less painful

    June 28, 2025

    Why proposed changes to forestry rules won’t solve the ‘slash’ problem

    June 28, 2025
    popular posts

    Apple’s App Review Fix Fails to Placate Developers

    Why wait for Black Friday? The Celestron 114LCM computerized telescope is $115 off right now

    Queer Songs That Need to Be Made Into Books ASAP

    Watch Family Guy Online: Season 21 Episode 7

    Grifters and Swindlers: 10 Riveting White Collar Crime Books

    Lindsay Lohan Wants to Produce More Romantic Comedies

    Keanu Reeves and China Miéville Book Announced

    Categories
    • Books (3,258)
    • Cover Story (2)
    • Events (18)
    • Fashion (2,427)
    • Interviews (43)
    • Movies (2,558)
    • Music (2,836)
    • News (154)
    • Science (4,408)
    • Technology (2,551)
    • Television (3,280)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT