Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»Stretching spider silk makes it stronger by aligning protein chains
    Science

    Stretching spider silk makes it stronger by aligning protein chains

    By AdminMarch 8, 2025
    Facebook Twitter Pinterest LinkedIn Tumblr Email
    Stretching spider silk makes it stronger by aligning protein chains


    Stretching spider silk makes it stronger
    Scanning electron microscopy images of fibers from engineered spider silk. To validate their computational findings, the Northwestern team used spectroscopy techniques to examine how the protein chains stretched and aligned in real fibers from engineered spider silk. Credit: Washington University at St. Louis

    When spiders spin their webs, they use their hind legs to pull silk threads from their spinnerets. This pulling action doesn’t just help the spider release the silk, it’s also a crucial step in strengthening the silk fibers for a more durable web.

    In a new study, Northwestern University researchers have discovered why the role of stretching is so important. By simulating spider silk in a computational model, the team discovered the stretching process aligns the protein chains within the fibers and increases the number of bonds between those chains. Both factors lead to stronger, tougher fibers.

    The team then validated these computational predictions through laboratory experiments using engineered spider silk. These insights could help researchers design engineered silk-inspired proteins and spinning processes for various applications, including strong, biodegradable sutures and tough, high-performance, blast-proof body armor.

    The study appears in Science Advances.

    “Researchers already knew this stretching, or drawing, is necessary for making really strong fibers,” said Northwestern’s Sinan Keten, the study’s senior author. “But no one necessarily knew why. With our computational method, we were able to probe what’s happening at the nanoscale to gain insights that cannot be seen experimentally. We could examine how drawing relates to the silk’s mechanical properties.”

    “Spiders perform the drawing process naturally,” said Northwestern researcher Jacob Graham, the study’s first author. “When they spin silk out of their silk gland, spiders use their hind legs to grab the fiber and pull it out. That stretches the fiber as it’s being formed. It makes the fiber very strong and very elastic. We found that you can modify the fiber’s mechanical properties simply through modifying the amount of stretching.”

    An expert in bioinspired materials, Keten is the Jerome B. Cohen Professor of Engineering, professor and associate chair of mechanical engineering and professor of civil and environmental engineering at Northwestern’s McCormick School of Engineering. Graham is a Ph.D. student in Keten’s research group.

    Stronger than steel, tougher than Kevlar

    Researchers have long been interested in spider silk because of its remarkable properties. It’s stronger than steel, tougher than Kevlar and stretchy like rubber. But farming spiders for their natural silk is expensive, energy-intensive and difficult. So, scientists instead want to recreate silk-like materials in the lab.

    “Spider silk is the strongest organic fiber,” Graham said. “It also has the advantage of being biodegradable. So, it’s an ideal material for medical applications. It could be used for surgical sutures and adhesive gels for wound-closure because it would naturally, harmlessly degrade in the body.”

    Study co-author Fuzhong Zhang, the Francis F. Ahmann Professor at Washington University (WashU) in St. Louis, has been engineering microbes to produce spider-silk materials for several years. By extruding engineered spider silk proteins and then stretching them by hand, the team has developed artificial fibers similar to threads from the golden silk orb weaver, a large spider with a spectacularly strong web.

    Simulating stretchiness

    Despite developing this “recipe” for spider silk, researchers still don’t fully understand how the spinning process changes fiber structure and strength. To tackle this open-ended question, Keten and Graham developed a computational model to simulate the molecular dynamics within Zhang’s artificial silk.

    Through these simulations, the Northwestern team explored how stretching affects the proteins’ arrangement within the fibers. Specifically, they looked at how stretching changes the order of proteins, the connection of proteins to one another and the movement of molecules within the fibers.

    Keten and Graham found that stretching caused the proteins to line up, which increased the fiber’s overall strength. They also found that stretching increased the number of hydrogen bonds, which act like bridges between the protein chains to make up the fiber. The increase in hydrogen bonds contributes to the fiber’s overall strength, toughness and elasticity, the researchers found.

    “Once a fiber is extruded, its mechanical properties are actually quite weak,” Graham said. “But when it’s stretched up to six times its initial length, it becomes very strong.”

    Discover the latest in science, tech, and space with over 100,000 subscribers who rely on Phys.org for daily insights.
    Sign up for our free newsletter and get updates on breakthroughs,
    innovations, and research that matter—daily or weekly.

    Experimental validation

    To validate their computational findings, the team used spectroscopy techniques to examine how the protein chains stretched and aligned in real fibers from the WashU team. They also used tensile testing to see how much stretching the fibers could tolerate before breaking. The experimental results agreed with the simulation’s predictions.

    “If you don’t stretch the material, you have these spherical globs of proteins,” Graham said. “But stretching turns these globs into more of an interconnected network. The protein chains stack on top of one another, and the network becomes more and more interconnected. Bundled proteins have more potential to unravel and extend further before the fiber breaks, but initially extended proteins make for less extensible fibers that require more force to break.”

    Although Graham used to think spiders were just creepy-crawlies, he now sees their potential to help solve real problems. He notes that engineered spider silk provides a stronger, biodegradable alternative to other synthetic materials, which are mostly petroleum-derived plastics.

    “I definitely look at spiders in a new light,” Graham said. “I used to think they were nuisances. Now, I see them as a source of fascination.”

    More information:
    Jacob Graham et al, Charting the envelope of mechanical properties of synthetic silk fibers through predictive modeling of the drawing process, Science Advances (2025). DOI: 10.1126/sciadv.adr3833. www.science.org/doi/10.1126/sciadv.adr3833

    Provided by
    Northwestern University


    Citation:
    Stretching spider silk makes it stronger by aligning protein chains (2025, March 7)
    retrieved 7 March 2025
    from https://phys.org/news/2025-03-spider-silk-stronger-aligning-protein.html

    This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
    part may be reproduced without the written permission. The content is provided for information purposes only.

    View Original Source Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    After 170 years, Thoreau’s river observations inform our changing climate

    May 8, 2025

    World’s first silicon-based quantum computer is small enough to plug into a regular power socket

    May 7, 2025

    Nothing is stronger than quantum connections – and now we know why

    May 7, 2025

    Astronomers observe the cooling process of a young stellar object following an accretion burst

    May 6, 2025

    ‘Titanic: The Digital Resurrection’ documentary sheds light on night ship sank

    May 6, 2025

    Ireland’s iconic megalithic tombs may have had an unexpected function

    May 5, 2025
    popular posts

    The Best Coffee Grinders to Amp Up Your Morning Brew

    Supreme Court Rejects Stay on Amazon Prime’s Mirzapur Season 3

    Bestseller Elena Armas Talks BookTok Fame, STEM Romances and Latest

    AI masters video game 6000 times faster by reading the

    Author Anthony Horowitz, Star Pippa Bennett-Warner on the Masterpiece Mystery (Video)

    The Buzziest Books of July

    Magda Butrym & H&M’s Collab Is Here in Time for Spring

    Categories
    • Books (3,211)
    • Cover Story (2)
    • Events (18)
    • Fashion (2,380)
    • Interviews (41)
    • Movies (2,510)
    • Music (2,788)
    • News (153)
    • Science (4,361)
    • Technology (2,502)
    • Television (3,233)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT