Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»Small proteins play big role in cellular energy balance
    Science

    Small proteins play big role in cellular energy balance

    By AdminOctober 1, 2022
    Facebook Twitter Pinterest LinkedIn Tumblr Email

    Scientists at Duke-NUS Medical School have discovered new molecular details of how cells ensure that their energy supply is adjusted to meet energy demand. Their study, carried out in collaboration with researchers at the University of Melbourne in Australia and Duke University in Durham, North Carolina, USA, highlights the crucial role microproteins play in assembling larger protein complexes inside energy-generating cell components known as mitochondria.

    Problems with mitochondria underlie a wide range of diseases, including common conditions such as heart failure, obesity, diabetes and cancer.

    “Our long-term goal is to learn how to manipulate the microproteins we are investigating to combat mitochondrial dysfunction in patients,” said senior author Assistant Professor Lena Ho, from Duke-NUS’ Cardiovascular & Metabolic Disorders (CVMD) Programme. “The more immediate significance of the research is to reveal new details of how mitochondria function and are maintained in all cells. The work could add an important new level of understanding to this central aspect of cell biology.”

    Mitochondria, often referred to as the powerhouses of the cell, are bounded by a double membrane. The inner of the two membranes hosts a series of proteins that transfer electrons along what is called the electron transport chain. This electron transport is a crucial part of the processes that extract chemical energy from nutrients and ultimately store it in energy-rich molecules of adenosine triphosphate (ATP).

    The new insight from the Duke-NUS team reveals that small microproteins (also called peptides) play a previously unrecognised role in allowing the electron transport chain to form. Specifically, they appear to work together to assist and control the assembly of one of the central proteins of the chain, called Complex III. This role allows the microproteins to participate in regulating the levels of electron transport chain proteins, and therefore energy supply, in response to changes in energy demand.

    “Microproteins have fascinated but also mystified biologists from diverse fields for a long time,” said Mr Liang Chao, co-first author of the study, who is a PhD candidate at Duke-NUS. “Our study provides an example of what they can do and how they participate in controlling energy metabolism at the deepest level of molecular detail.”

    “Mitochondria are the batteries and factories of our cells, making not only energy but also many of the building blocks required for cells to multiply and stay alive,” said Dr Shan Zhang, formerly a research fellow with Asst Prof Ho’s Endogenous Peptides Lab, under Duke-NUS’ CVMD Programme, and now an Assistant Professor at Zhejiang University, China. “We clearly see that modulating the levels of these microproteins can lead to or protect against mitochondrial dysfunction, which is a feature that underlies almost all types of common diseases.”

    The team now plans to move on from these initial findings at the cellular level to more fully investigate the roles and significance of the microproteins in preclinical models and ultimately in humans.

    “These next stages will hopefully lead us towards learning how to target the microprotein activity to treat mitochondrial diseases,” Asst Prof Ho concluded.

    “Innovations in healthcare and disease prevention benefit from advances in knowledge made possible by fundamental scientific research, such as this study by Assistant Professor Ho and her team,” said Professor Patrick Casey, Senior Vice-Dean for Research at Duke-NUS. “I look forward to seeing where the research leads us next.”

    Story Source:

    Materials provided by Duke-NUS Medical School. Note: Content may be edited for style and length.

    Read The Full Article Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Failed Soviet probe will soon crash to Earth – and we don’t know where

    May 9, 2025

    After 170 years, Thoreau’s river observations inform our changing climate

    May 8, 2025

    World’s first silicon-based quantum computer is small enough to plug into a regular power socket

    May 7, 2025

    Nothing is stronger than quantum connections – and now we know why

    May 7, 2025

    Astronomers observe the cooling process of a young stellar object following an accretion burst

    May 6, 2025

    ‘Titanic: The Digital Resurrection’ documentary sheds light on night ship sank

    May 6, 2025
    popular posts

    Floor Jansen Busts ‘Sick Dance Moves’ After Forgetting Nightwish Lyrics

    Apple Asks Suppliers to Decarbonise, Announces New Clean Energy Investments

    Sources: Nvidia and Broadcom are running 18A manufacturing tests with Intel, and AMD is also evaluating whether Intel's 18A process is suitable for its needs (Reuters)

    Telegram to Auction Rare Usernames on New TON Blockchain Marketplace

    Growing pains may indicate a greater risk of migraines later

    We Tried to Make Sense of These Euphoria Couples with

    Stephanie Brother on Reverse Harem Romance

    Categories
    • Books (3,212)
    • Cover Story (2)
    • Events (18)
    • Fashion (2,381)
    • Interviews (41)
    • Movies (2,511)
    • Music (2,789)
    • News (153)
    • Science (4,362)
    • Technology (2,505)
    • Television (3,234)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT