Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»Safe, sustainable photo-on-demand synthesis of polypeptide precursors: Promising ‘building blocks’
    Science

    Safe, sustainable photo-on-demand synthesis of polypeptide precursors: Promising ‘building blocks’

    By AdminNovember 7, 2022
    Facebook Twitter Pinterest LinkedIn Tumblr Email

    Animals such as spiders make fibers which are strong and elastic. These fibers have a polypeptide structure and serve as inspiration for research into the development of functional materials. Alpha-amino acid N-Carboxyanhydrides (NCAs) are precursors for artificial polypeptides, however they are difficult to produce. Using the photo-on-demand method that they previously developed, a research group has synthesized NCA in a safe, inexpensive and simple manner from chloroform and amino acid.

    In nature, there are animals that make fibers which are strong and elastic. For example, the thread that spiders produce to make webs. These fibers have a polypeptide structure and serve as inspiration for research into the development of functional materials. Alpha (α)-amino acid N-Carboxyanhydrides (NCAs) are precursors for artificial polypeptides. However, this compound decomposes easily, making it difficult to obtain commercially. Therefore, it is necessary to synthesize the right quantity of α-amino acid NCAs at the location and time that they are required. NCAs are usually synthesized from plant-derived amino acids and phosgene. However, phosgene is extremely toxic and dangerous to use, leading to growing demand for new chemical compounds and reactions that can be substituted for it. Using the photo-on-demand phosgenation method that they previously developed, Associate Professor TSUDA Akihiko’s research group at Kobe University’s Graduate School of Science has succeeded in synthesizing NCA in a safe, inexpensive and simple manner from chloroform (a common organic solvent) and amino acid.

    Patents were filed in relation to this study in November 2018 and November 2019. The academic paper was published online in ACS Omega on October 19, 2022.

    Main points

    • Safe on-site and on-demand synthesis of polypeptide precursors (NCAs) using light.
    • The research group succeeded in synthesizing 11 types of NCA from chloroform (a common organic solvent) and commercial amino acid.
    • In the laboratory, they managed to synthesize these substances on a scale up to ten grams (and this can be scaled up to for production on a kilogram scale)
    • Compared to the conventional synthesis method (using phosgene) and phosgene substitution methods, the raw materials are less expensive, the work involved is easier and less waste is generated. This could reduce costs as well as the burden on the environment.
    • The reaction is promoted by visible light, and it is theoretically possible to perform this synthesis reaction using sunlight
    • These research results will accelerate industry/academia’s development of bio-derived functional polypeptides.
    • It is hoped that these methods will become established techniques that will contribute greatly towards the SDGs and efforts to become carbon neutral.

    Research Background

    Phosgene (COCl2) is used as precursor for polymers and as a pharmaceutical intermediate. The global phosgene market continues to grow by several percent each year, with around 8 to 9 million tonnes produced annually. However, phosgene is extremely toxic. For safety reasons, research and development is being conducted to find alternatives. In a world-first discovery, Associate Professor Tsuda’s research group irradiated chloroform with ultraviolet light, which caused it to react with oxygen and generate high yields of phosgene (patent no. 5900920). In order to do this in an even safer and easier manner, the research group found a way that the phosgene-generating reactions could be instantly performed. They first dissolved the reactants and catalysts in chloroform, and generated phosgene by irradiating the solution with light (patent no. 6057449). In this way, phosgene-based organic synthesis can be carried out as if phosgene wasn’t used.

    advertisement

    The research group has named their discovery ‘photo on demand organic synthesis method’ and have successfully used it to synthesize numerous useful organic chemicals and polymers (list of patents (in Japanese): Patents of Tsuda Laboratory). For example, they successfully synthesized large quantities of chloroformate and carbonate in a safe, inexpensive and simple manner merely by irradiating a mixed solution of chloroform and alcohol (with a base added as needed) with light.

    These highly original reactions developed at Kobe University have been improved through cooperation with domestic chemical companies, and the eventual aim of this research is practical implementation. With the addition of funding from JST A-STEP, further applied research is being conducted, as well the development of functional polyurethane using this synthesis method.

    The photo-on-demand organic synthesis method is highly safe and economical, in addition to having a low impact on the environment. Consequently, it has garnered attention from both industry and academia as a sustainable chemical synthesis method (Highlights of Tsuda Laboratory (in Japanese)).

    Research Methodology

    In this research, α-amino acid N-Carboxyanhydrides (NCAs) were successfully synthesized from the raw materials chloroform and α-amino acid using the photo-on-demand method. NCA is a polypeptide precursor. Although α-amino acid dissolves easily in water, it doesn’t in chloroform. This meant that the research group had not been able to synthesize NCA using the previous photo-on-demand method. However, they discovered that by adding acetonitrile (CH3CN), which can be mixed with water and chloroform as a solvent, a high yield (around 91%) of NCA could be produced. The reaction was not expected to proceed normally because acetonitrile absorbs the light, hindering the photo oxidation of the chloroform.

    Surprisingly, the researchers discovered that the reaction occurred in spite of this hindrance, leading to this study’s successful results. Apart from the raw material (amino acid) degraded by the light, this photoreaction can also be used to produce NCAs that are normally synthesized using the phosgene method. So far, the research group has successfully synthesized 11 types of NCA using this photoreaction.

    A detailed breakdown of the synthesis method is as follows. Firstly, α-amino acid is suspended in a mixed solution of chloroform and acetonitrile. This is then photo-irradiated for two to three hours at 70°C. After the lamp is switched off, NCA is generated by heating and stirring the solution for around one hour. This product can be extracted and refined to obtain highly pure NCA. The photo-oxidation of the chloroform is promoted by a radical chain reaction that is initiated by the light cleaving C-Cl bonds. Therefore, synthesis can be achieved on a scale of up to 10 grams merely by increasing the size of the reaction container and keeping the light source the same. It is hoped that by further scaling up this method, it can be used in a wide range of fields ranging from academia to chemical industries.

    Further Developments

    The new Photo-on-Demand NCA synthesis method developed through this research enables large quantities of NCAs (which are polypeptide precursors) to be synthesized in a safe, inexpensive and easy manner. This easy obtainment of NCAs will spur on the research and development of artificial polypeptides, which will hopefully lead to the creation of new materials, such as novel functional polypeptide fibers that will outperform natural fibers produced by animals. In addition, it is expected that synthesizing these new polypeptide fibers using plant-derived amino acid as a starter will enable the development of next-generation biomaterials that meet the needs of the times. The Tsuda group’s goal is for the photo-on-demand NCA Synthesis Method to be industrially implemented. To this end, they are offering patent licenses and guidance on how to utilize these techniques to interested companies, in addition to continuing their research and development efforts. They hope to develop this research even further by collaborating with industries.

    Read The Full Article Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Your chance of having a boy or girl may not be 50/50

    July 19, 2025

    Crustal faulting generates key energy sources, study shows

    July 19, 2025

    Tuvalu residents prepare for world’s first planned migration of an entire nation — and climate change is to blame

    July 18, 2025

    AI demand could drive up US electricity bills – even if it fizzles

    July 18, 2025

    International study shows impact of social media on young people

    July 17, 2025

    Best spotting scopes in 2025 for birdspotting and wildlife watching

    July 17, 2025
    popular posts

    Why is one half of Mars so different to the other? ‘Marsquakes’ may have just revealed the answer

    New Romance Books to Read

    Black Panther: Wakanda Forever review – a bold and brilliant

    Recommendations: Best Christmas Movies for Adults

    Wilco’s ‘Yankee Hotel Foxtrot’ Hits Top 10 on Album Sales

    Sea dragons’ genes give clues to their distinctive looks

    Interview with Paula Scott, Author of River of Mercy

    Categories
    • Books (3,297)
    • Cover Story (5)
    • Events (19)
    • Fashion (2,457)
    • Interviews (43)
    • Movies (2,596)
    • Music (2,875)
    • News (155)
    • Politics (2)
    • Science (4,446)
    • Technology (2,589)
    • Television (3,319)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT