Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»RNA lipid nanoparticle engineering stops liver fibrosis in its tracks,
    Science

    RNA lipid nanoparticle engineering stops liver fibrosis in its tracks,

    By AdminJanuary 22, 2023
    Facebook Twitter Pinterest LinkedIn Tumblr Email
    RNA lipid nanoparticle engineering stops liver fibrosis in its tracks,

    Preparation and application of ligand-tethered lipidoid nanoparticles for targeted siRNA delivery to HSCs to treat liver fibrosis. a Formulation of AA-T3A-C12/siHSP47 LNP via microfluidic mixing. The ethanol lipid solution containing anisamide-tethered lipidoid (AA-T3A-C12), phospholipid (DSPC), PEG-lipid (C14-PEG), and cholesterol is rapidly mixed with an acidic aqueous solution containing HSP47 siRNA in a microfluidic device to formulate AA-T3A-C12/siHSP47 LNP. b Scheme of targeted AA-T3A-C12/siHSP47 LNP delivery to activated HSCs to knockdown HSP47 and treat liver fibrosis. HSCs are located in the space of Disse, an area between LSECs and hepatocytes. After rapidly shedding PEG in circulation, the LNP exposes multivalent anisamide ligands on its surface that can strongly bind with sigma receptors overexpressed on activated HSCs to mediate cellular uptake. b was created with BioRender.com. Credit: Nature Communications (2023). DOI: 10.1038/s41467-022-35637-z

    Since the success of the COVID-19 vaccine, RNA therapies have been the object of increasing interest in the biotech world. These therapies work with your body to target the genetic root of diseases and infections, a promising alternative treatment method to that of traditional pharmaceutical drugs.

    Lipid nanoparticles (LNPs) have been successfully used in drug delivery for decades. FDA-approved therapies use them as vehicles for delivering messenger RNA (mRNA), which prompts the cell to make new proteins, and small interfering RNA (siRNA), which instruct the cell to silence or inhibit the expression of certain proteins.

    The biggest challenge in developing a successful RNA therapy is its targeted delivery. Research is now confronting the current limitations of LNPs, which have left many diseases without an effective RNA therapy.

    Liver fibrosis occurs when the liver is repeatedly damaged and the healing process results in the accumulation of scar tissue, impeding healthy liver function. It is a chronic disease characterized by the buildup of excessive collagen-rich extracellular matrix (ECM). Liver fibrosis has remained challenging to treat using RNA therapies due to a lack of delivery systems for targeting activated liver-resident fibroblasts. Both the solid fibroblast structure and the lack of specificity or affinity to target these fibroblasts has impeded current LNPs from entering activated liver-resident fibroblasts, and thus they are unable to deliver RNA therapeutics.

    To tackle this issue and help provide a treatment for the millions of people who suffer from this chronic disease, Michael Mitchell, J. Peter and Geri Skirkanich Assistant Professor of Innovation in the Department of Bioengineering, and postdoctoral fellows Xuexiang Han and Ningqiang Gong, found a new way to synthesize ligand-tethered LNPs, increasing their selectivity and allowing them to target liver fibroblasts.

    Lulu Xue, Margaret Billingsley, Rakan El-Mayta, Sarah J. Shepherd, Mohamad-Gabriel Alameh and Drew Weissman, Roberts Family Professor in Vaccine Research and Director of the Penn Institute for RNA Innovation at the Perelman School of Medicine, also contributed to this work.

    Their study, published in Nature Communications, shows how a small-molecule ligand incorporated into the synthesis of the ionizable lipid, a key component of the LNP, creates an affinity to the notoriously hard-to-target activated fibroblasts in the liver responsible for the buildup of collagen.

    The collagen buildup is accompanied by an increased expression of Heat Shock Protein 47 (HSP47), the protein that drives collagen biogenesis and secretion. Overexpression of HSP47 and increased collagen biogenesis ultimately progresses to fibrosis.

    Once their LNPs arrive at and enter the target cell, siRNA is released, which silences the expression of HSP47, inhibits the production of collagen and stops fibrosis in its tracks. The treatment, shown to be successful in mice, is a promising treatment for liver fibrosis in humans.

    This novel approach to ionizable lipid synthesis is the key to opening many more doors for RNA therapy to treat diverse diseases.

    “To make LNPs selective enough to target hepatic stellate cells, those that drive fibrosis, we incorporated an anisamide ligand, a molecule which has a high affinity for the receptor on these stellate cells, into the structure of the ionizable lipid,” says Mitchell. “Essentially, we created a lock-and-key mechanism to target and unlock delivery to these hard-to-reach cells.”

    The synthesis process was developed by Han and colleagues as a “one-pot, two-step” process. To create a library of ionizable lipids, the team first put an anisamide ligand (AA) precursor and different amino cores together. They then added the hydrophobic tail to create AA-tethered ionizable lipids. Anisamide was chosen as the ligand due to its neutral and stable nature as well as its affinity for the overexpressed sigma receptors on stellate cells. Once the library of AA-tethered LNPs was created, the team analyzed their abilities to target and deliver therapy to cells through a two-round selection process.

    “We needed to find a specific AA-tethered LNP that was both potent and selective,” says Han. “The first round of the selection process was done by examining how well our LNPs could knock down green fluorescence protein (GFP) in fibroblasts to measure potency. GFP provides great visual evidence for how therapeutic RNA turns off gene expression in real time.”

    “In the second round, we tested the selective ability of the potent LNP,” says Han. “We did this by blocking the sigma receptor to understand how significant the specific AA ligand group was in the LNPs ability to get into target cells. Unsurprisingly, we showed that the AA group was significant; after the sigma receptor blockade, we lost the lock-and-key mechanism and the AA-tethered LNP would not enter the target cell.”

    The team identified AA-T3A-C12 as both a potent and selective LNP carrying therapeutic siRNA able to achieve 65% knockdown of HSP47 expression in mice as well as enhance the recovery of damaged liver tissue. The results of the study conclude that the AA-T3A-C12 LNP outperforms the MC3 LNP, a clinically utilized non-viral vector that has been FDA-approved for use in hepatic, or liver, cell RNA therapy.

    This new ligand-tethered LNP provides a form of treatment for liver fibrosis and the synthesis method provides a way to tailor LNPs to other previously hard-to-target cells and tissues in the body.

    “The potential of LNPs is enormous,” says Han. “We’re making LNPs smarter and more efficient.”

    “We are excited to have produced a potential treatment that tackles the genetic root of this liver disease,” says Mitchell. “And, because this LNP delivery vehicle works in fibrotic cells of the liver, it may lead to developing a treatment for other types of fibrosis in the body, such as fibrosis that arises in the lung or in tumors.”

    “Beyond what we have investigated in the liver, this method of creating LNPs can be used to unlock delivery for therapies to other cell types,” he adds. “We could potentially target cells in the brain, lungs or heart by installing specific targeting ligands into the ionizable lipid structure. There are many avenues from here and we are excited to continue pushing this research in new directions.”

    More information: Xuexiang Han et al, Ligand-tethered lipid nanoparticles for targeted RNA delivery to treat liver fibrosis, Nature Communications (2023). DOI: 10.1038/s41467-022-35637-z

    Provided by University of Pennsylvania

    Citation: RNA lipid nanoparticle engineering stops liver fibrosis in its tracks, reverses damage (2023, January 17) retrieved 22 January 2023 from https://phys.org/news/2023-01-rna-lipid-nanoparticle-liver-fibrosis.html

    This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

    Read The Full Article Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Orcas filmed making out in the wild for first time

    June 27, 2025

    Mystery fireball spotted plummeting to Earth over the US

    June 27, 2025

    New IQ research shows why smarter people make better decisions

    June 26, 2025

    ‘God-king’ born from incest in ancient Ireland wasn’t a god or a king, new study finds

    June 26, 2025

    Generation Alpha’s coded language makes online bullying hard to detect

    June 25, 2025

    Pulsars could have tiny mountains

    June 25, 2025
    popular posts

    Miles Tries to Get Answers From Robyn in ‘The Equalizer’

    Lab work digs into gullies seen on giant asteroid Vesta by NASA’s Dawn

    The Best Climbing Gear for Beginners

    Keep Spooky Season Alive With These New Horror Books Out

    The Short Story That Saved My Life

    10 bizarre phenomena that lit up the sky (and their

    Disney Plus Schedule July 15-21 2024: New TV Shows &

    Categories
    • Books (3,252)
    • Cover Story (2)
    • Events (18)
    • Fashion (2,421)
    • Interviews (43)
    • Movies (2,552)
    • Music (2,830)
    • News (154)
    • Science (4,402)
    • Technology (2,545)
    • Television (3,274)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT