Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»Researchers develop a novel 2D material that uses a virus
    Science

    Researchers develop a novel 2D material that uses a virus

    By AdminMarch 6, 2023
    Facebook Twitter Pinterest LinkedIn Tumblr Email
    Researchers develop a novel 2D material that uses a virus

    Top left, Thermograph of the sample upon application of electrical signal; Top right, Transmission electron microscopy image of MNM; Bottom left, Binding interface of the virus-cancer cell protein structure; Bottom right, Schematic diagram of the composition and process used to construct the MNM. Credit: Pharmaceutics (2022). DOI: 10.3390/pharmaceutics15010106

    Electro-thermal therapy, which involves applying electrical signals to nanomaterials, provides high cancer cell targeting accuracy and is highly bio-compatible. In this research, scientists from the Singapore University of Technology and Design (SUTD) have designed a novel thermal-based therapy nano-system that destroys more than 20% of pancreatic cancer cells using microsecond electrical pulses and with excellent bio-compatibility.

    Electro-thermal therapy works by injecting two dimensional (2D) materials in cancer cells and applying electrical currents to the cells. This causes the materials to heat up and kill neighboring cancer cells. Traditional electro-thermal therapy with 2D materials however, can fail as a result of weak cancer cell ablation. This is due to the limited amount of materials assembled on the cancer cells and the weak Joule heating generated in the material.

    To alleviate these issues, the researchers deposited the M13 virus on molybdenum disulfide (MoS2) layered materials to create a hybrid nanomaterial MoS2 Nanostructure with M13 virus (the authors call it MNM). Moreover, they altered the nanomaterial surfaces with polyethylene glycol (PEG) to improve bio-compatibility.

    The introduction of the M13 virus improves the electro-thermal therapy performance. Compared to conventional 2D materials, a larger amount of MNM assembles on the cancer cells due to the higher specificity of the binding of the M13 virus to cancer cells. Due to the high electrical conductivity of the MoS2 material, a strong Joule heating is also generated.

    As a result, a larger amount of heat is produced in the nanomaterials, and can be used to kill a larger population of the cancer cells. For example, the MNM nanosystem can decrease the percentage of cancer cells by 23%, which is approximately 2 times higher than what current thermal-based therapy nano-systems can do.

    “For many years, cancer eradication has been the dream of cancer patients and researchers. Eliminating recurrence and metastasis of the cancer in the body is of vital importance,” says principal investigator, Assistant Professor Desmond Loke from the Singapore University of Technology and Design (SUTD).

    “However, a single conventional therapy is unable to eradicate cancer cells completely, due to the diversity, heterogeneity, and complexity of the cancer cells. This is why we aimed to design a simple nanosystem or nanomaterial to synergistically eradicate and treat cancer cells.”

    The paper is published in the journal Pharmaceutics.

    More information: Maria P. Meivita et al, An Efficient, Short Stimulus PANC-1 Cancer Cell Ablation and Electrothermal Therapy Driven by Hydrophobic Interactions, Pharmaceutics (2022). DOI: 10.3390/pharmaceutics15010106

    Provided by Singapore University of Technology and Design

    Citation: Researchers develop a novel 2D material that uses a virus to kill cancer cells (2023, February 16) retrieved 5 March 2023 from https://phys.org/news/2023-02-2d-material-virus-cancer-cells.html

    This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

    Read The Full Article Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    X-ray boosting fabric could make mammograms less painful

    June 28, 2025

    Why proposed changes to forestry rules won’t solve the ‘slash’ problem

    June 28, 2025

    Orcas filmed making out in the wild for first time

    June 27, 2025

    Mystery fireball spotted plummeting to Earth over the US

    June 27, 2025

    New IQ research shows why smarter people make better decisions

    June 26, 2025

    ‘God-king’ born from incest in ancient Ireland wasn’t a god or a king, new study finds

    June 26, 2025
    popular posts

    Dangerous Liaisons Season 1 Episode 8 Review: It’s War

    Alice in Chains, Shinedown Scrutinized in Pandemic Payout Report

    Girlpool Break Up

    Don’t look back: The aftermath of a distressing event is

    ‘Carpenter Christmas Romance’ Stars Talk the Movie’s Sexiest Scenes

    Fashion People Can’t Stop Wearing the Twisted Seam Jeans Trend This Autumn

    Racism in Health: The Roots of the U

    Categories
    • Books (3,254)
    • Cover Story (2)
    • Events (18)
    • Fashion (2,423)
    • Interviews (43)
    • Movies (2,554)
    • Music (2,832)
    • News (154)
    • Science (4,404)
    • Technology (2,547)
    • Television (3,276)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT