Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»Researchers create salts for cheap and efficient CO2 capture
    Science

    Researchers create salts for cheap and efficient CO2 capture

    By AdminMay 23, 2023
    Facebook Twitter Pinterest LinkedIn Tumblr Email
    Researchers create salts for cheap and efficient CO2 capture

    Graphical abstract. Credit: Cell Reports Physical Science (2023). DOI: 10.1016/j.xcrp.2023.101383

    A team of international researchers led by Professor Cafer T. Yavuz of King Abdullah University of Science and Technology (KAUST), Prof. Bo Liu from University of Science and Technology of China (USTC), and Prof. Qiang Xu of Southern University of Science and Technology (SUSTech) have developed a promising method for carbon capture and storage.

    Methane hydrate is studied for its ability to capture and trap gas molecules such as carbon dioxide under high pressure. However, it is difficult to impossible to recreate these conditions in the lab, and the approach is additionally energy intensive, as the methane-ice solid requires refrigeration. Using a salt—guanidinium sulfate—the scientists have successfully created lattice-like structures called clathrates that effectively mimic the methane hydrate activity, trapping the CO2 molecules and resulting in an energy efficient way to contain the greenhouse gas.

    “The guanidinium sulfate serves to organize and trap the CO2 molecules without reacting with them,” said Cafer Yavuz, professor of chemistry, and director of the KAUST Oxide and Organic Nanomaterials for Energy & Environment (ONE) Laboratory. “We have discovered a rare example of a clathrate that is stable and non-corrosive at ambient temperature and pressure, a highly desirable feature compared with ethanol amine, ammonia and other solutions that are commonly used in carbon capture.”

    Previous carbon capture methods included chemisorption, where chemical bonds form between CO2 molecules and the surface. This process worked well; however, the chemical bonds require energy to break them down, which drives up the cost of the CO2 capture operation. The salt-based, clathrate structure utilizes low energy, physisorption processes while capturing CO2 without water or nitrogen interference, opening a promising venue for future carbon capture and storage technologies through rapid CO2 solidification.

    The discovery introduces a new way of storing and transporting carbon dioxide as a solid. CO2 is conventionally carried as a solid in the form of dry ice; compressed in gas cylinders; or in the form of carbonates. The salt clathrate allows CO2 to be carried as a solid powder, yielding remarkably high volume per weight capacity, making this method the least energy intensive, with tremendous potential for real life applications.

    “Our team made it possible to carry CO2 in a solid form without the need for refrigeration or pressure. You will be able to literally shovel CO2 loaded solids from now on,” he said. “The impact is wide and strong, as the global fuel industry and the Kingdom entities are actively looking for ways to capture, store and transport CO2 without significant energy penalties.”

    The method could have a significant impact on the fight against climate change, enabling energy-efficient carbon capture and storage. The research team is optimistic that their findings will lead to further improvements in CO2 capture in terms of stability, recyclability, sorption capacity and selectivity, and lowering regeneration energy penalty and cost.

    The research was carried out at Southern University of Science and Technology, University of Science and Technology of China, and King Abdullah University of Science and Technology. The research findings have been published in the journal Cell Reports Physical Science.

    More information: Zhiling Xiang et al, Synthesis of stable single-crystalline carbon dioxide clathrate powder by pressure swing crystallization, Cell Reports Physical Science (2023). DOI: 10.1016/j.xcrp.2023.101383

    Provided by King Abdullah University of Science and Technology

    Citation: Researchers create salts for cheap and efficient CO2 capture (2023, May 3) retrieved 23 May 2023 from https://phys.org/news/2023-05-salts-cheap-efficient-co2-capture.html

    This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

    Read The Full Article Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    After 170 years, Thoreau’s river observations inform our changing climate

    May 8, 2025

    World’s first silicon-based quantum computer is small enough to plug into a regular power socket

    May 7, 2025

    Nothing is stronger than quantum connections – and now we know why

    May 7, 2025

    Astronomers observe the cooling process of a young stellar object following an accretion burst

    May 6, 2025

    ‘Titanic: The Digital Resurrection’ documentary sheds light on night ship sank

    May 6, 2025

    Ireland’s iconic megalithic tombs may have had an unexpected function

    May 5, 2025
    popular posts

    ‘Who Killed Robert Wone?’ Why Real-Life Murder Mystery Is Like

    What is forest bathing?

    Netflix Reveals First Look at Live-Action ‘One Piece’ Series

    Here Are the Lyrics to Harry Styles’ ‘As It Was’

    Fossils in the ‘Cradle of Humankind’ may be more than

    Physics offers a path to better brews

    Going For A Stroll? Lace Up With The 15 Best

    Categories
    • Books (3,211)
    • Cover Story (2)
    • Events (18)
    • Fashion (2,380)
    • Interviews (41)
    • Movies (2,510)
    • Music (2,788)
    • News (153)
    • Science (4,361)
    • Technology (2,502)
    • Television (3,233)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT