Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»Research could pave way to greener, more sustainable products made
    Science

    Research could pave way to greener, more sustainable products made

    By AdminAugust 30, 2023
    Facebook Twitter Pinterest LinkedIn Tumblr Email
    Research could pave way to greener, more sustainable products made

    Carbon-based materials have several qualities that make them attractive as catalysts for speeding up chemical reactions. They are low-cost, lightweight and their high surface area provides a good scaffold on which to anchor catalysts, keeping them stable and dispersed far apart, while providing molecules a lot of surface area to work. This makes carbons useful for energy storage and sensors. Over the last 10 years, carbons have been used in electrochemistry to catalyze reactions to make chemicals and fuel cells.

    However, in work recently reported in Nature Communications, University of Delaware’s Dion Vlachos and researchers in the Catalysis Center for Energy Innovation (CCEI), with collaborators from Brookhaven National Laboratory, made some surprising findings as they were developing techniques to better understand the role oxygen plays in how carbon-based catalysts perform.

    According to Vlachos, what they found turned some of what they knew about chemistry upside down.

    Not all oxygens are the same

    Despite their utility, carbons are not well understood. They are not uniform either. Carbon materials sometimes have oxygen in them, and this oxygen can come in multiple different forms — as an alcohol, aldehyde, ketone or acid. One open question is what the oxygen in these carbon materials does.

    So, Vlachos and a team of researchers took carbon molecules and systematically introduced more and more oxygen, then characterized the resulting material using spectroscopic techniques to measure how much and what type of oxygen was present. The researchers did this for a library of about 10 to 15 materials, then performed reactions using the different oxygenated carbons. This allowed them to correlate the carbon material’s reactivity with the amount and type of oxygens present using machine learning tools.

    The team’s work showed a connection between the amount and type of oxygen present and performance, including which oxygens are more active. Counterintuitively, the researchers also found something surprising: long-range effects from aromatic rings far away from a catalyst site can sometimes cause the alcohol groups of the carbon to become more acidic than familiar acidic carbon functional groups found in organic chemistry small acids.

    advertisement

    At first, the researchers were surprised, but then they did some calculations and confirmed that the effect was due to the alcohol-based oxygenated carbons in aromatic rings.

    “Carbon has aromatic rings,” said Vlachos, the Unidel Dan Rich Chair in Energy and director of CCEI, an Energy Frontier Research Center supported by the U.S. Department of Energy. “And the more carbon rings that are added to a material, the greater the chance of creating a regional phenomenon where long-range effects from far away can have a controlling effect on the activity of the catalyst sites.”

    This is not the case with typical catalysis chemistry, where the effect is very local. For example, bond A affects bond B and that’s it.

    “The whole chemistry thinking is upside down. This was not expected,” he added.

    In terms of applications, Vlachos said this means if researchers want to create a more acidic carbon catalyst, they will need to use more alcohol functional groups, in this case, hydroxyls.

    The researchers used advanced techniques to validate the mathematical modeling results and characterize what would happen to the oxygen in materials at near-real world conditions, while the chemistry was occurring.

    “The University of Delaware team accomplished an impressive feat by using advanced tools and methods to unravel a complicated catalytic system,” said Anibal Boscoboinik, a materials scientist with the Center for Functional Nanomaterials, a U.S. Department of Energy (DOE) Office of Science User Facility at DOE’s Brookhaven National Laboratory. “We are delighted to have played a part in this significant achievement by conducting measurements using a special kind of spectroscopy at the Center for Functional Nanomaterials.”

    With this new methodology for determining what each part of the chemistry is doing, the research team can test different techniques for making materials to see what approach has the best effect. For example, are all oxygen molecules equally effective at speeding up catalytic reactions, or are some better than others? Vlachos also is curious whether the oxygen source can be used to disperse metals for reactions. Traditional methods for introducing oxygen into a reaction to make materials are corrosive, so finding greener ways to do this could bring more sustainable processes closer to fruition.

    Jiahua Zhou and Piaoping Yang, chemical and biomolecular engineering doctoral students, served as co-lead authors on the paper. CCEI director Dion Vlachos and Weiqing Zheng, CCEI associate director, served as co-principal investigators on the project. UD co-authors include Stavros Caratzoulas, Pavel A. Kots and Caitlin M. Quinn. Other collaborating co-authors include Matheus Dorneles de Mello and J. Anibal Boscoboinik from Brookhaven National Laboratory, and Ying Chen, Maximilian Cohen and Wendy J. Shaw, from Pacific Northwest National Laboratory.

    Read The Full Article Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Best sleep trackers 2025: From smart rings to Garmin watches

    July 20, 2025

    Your chance of having a boy or girl may not be 50/50

    July 19, 2025

    Crustal faulting generates key energy sources, study shows

    July 19, 2025

    Tuvalu residents prepare for world’s first planned migration of an entire nation — and climate change is to blame

    July 18, 2025

    AI demand could drive up US electricity bills – even if it fizzles

    July 18, 2025

    International study shows impact of social media on young people

    July 17, 2025
    popular posts

    Who are the Assyrians?

    Summary and Review: Intermezzo by Sally Rooney

    Sascha Penn & Mekai Curtis on Raising Kanan’s Explosive New Season

    How James Hetfield Triumphed Over Childhood Trauma

    Arctic seals have weird bones in their noses that help

    ‘Monarch: Legacy of Monsters’ Trailer: Godzilla Roars in a World

    Dancing With the Stars Season 31: First Two Celebrities Revealed!

    Categories
    • Books (3,298)
    • Cover Story (5)
    • Events (19)
    • Fashion (2,457)
    • Interviews (43)
    • Movies (2,597)
    • Music (2,876)
    • News (155)
    • Politics (2)
    • Science (4,447)
    • Technology (2,590)
    • Television (3,320)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT