Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»Rare ‘Obi-Wan Kenobi’ star survives death by supernova, returns stronger
    Science

    Rare ‘Obi-Wan Kenobi’ star survives death by supernova, returns stronger

    By AdminJuly 3, 2022
    Facebook Twitter Pinterest LinkedIn Tumblr Email

    In 2012, a shriveled white star in a nearby galaxy reached the end of its life and exploded in a violent, thermonuclear supernova. Such explosions — known as type 1a supernovas — are a common end for billions of stars in our universe, typically resulting in the utter obliteration of the old star at the heart of the blast.

    But this time, something went wrong.

    As the old star blew up from the inside out, the explosion failed to reach the power and brightness of a typical type 1a supernova. When the dust settled years later, scientists observing the stellar wreckage saw that the old star hadn’t vanished at all — it was still there, even bigger and brighter than before.

    Somehow, the star had survived its own supernova explosion — a cosmic magic trick never seen before. Now, in a study published in the The Astrophysical Journal, researchers attempt to explain how it happened.

    Related: Strange ‘reverse shock wave’ supernova is exploding in the wrong direction

    “This star surviving is a little like Obi-Wan Kenobi coming back as a force ghost in Star Wars,” study co-author Andy Howell, adjunct professor of physics at the University of California, Santa Barbara (UCSB), said in a statement. “Nature tried to strike this star down, but it came back more powerful than we could have imagined. It is still the same star, but back in a different form. It transcended death.”

    The force awakens…

    Astronomers first detected the supernova — named SN 2012Z — while its progenitor star was in mid-explosion. Using the Hubble Space Telescope, researchers saw the bright flare of light on the edge of a spiral galaxy some 120 million light-years from Earth, amidst a river of stars called the Eridanus constellation.

    Based on its brightness and the type of light emitted, the blast appeared to be a type 1a supernova — a thermonuclear explosion that is thought to occur in star systems where the shriveled husk of a burnt-out star, known as a white dwarf, shares a close orbit with another, larger star. Scientists aren’t sure exactly how these explosions occur, but a popular theory suggests that the white dwarf gradually draws in gas from its companion star, until the white dwarf reaches a critical mass that triggers a runaway thermonuclear reaction in its core — resulting in a massive supernova explosion.

    Subsequent observations in 2014 revealed that the supernova was stranger than astronomers had initially guessed. The explosion was much dimmer and weaker than a typical type 1a supernova — putting it in a rare category called a type 1ax supernova, or a “failed” type 1a supernova. But more baffling still, the researchers identified a white dwarf star at the exact epicenter of the explosion, shining even brighter than the progenitor star that had been there before.

    This was the first time that scientists had ever identified the progenitor star of a white dwarf supernova, the team wrote — and the first time a white dwarf star had apparently survived its own thermonuclear explosion.

    “Nobody was expecting to see a surviving star that was brighter,” study lead author Curtis McCully, a postdoctoral researcher at UCSB, said in the statement. “That was a real puzzle.”

    The best clue to solving this puzzle is the weakened nature of the type 1ax supernova, the researchers wrote. It’s possible that, when the explosion ignited, it was too weak to fully blow away all the gas that comprised the white dwarf. Following the initial explosion, some of this material may have fallen back onto the partially-exploded star, creating a zombie object called a bound remnant.

    Counterintuitively, white dwarf stars have greater diameters when they have less mass, and grow smaller as they become more massive, the researchers wrote. So, when the bound remnant formed after the weakened supernova, it became initially bigger and brighter than its progenitor white dwarf. Over time, the star will likely return to its initial state, becoming smaller and denser, the team added.

    Why the star failed to ignite into a typical type 1a supernova in the first place remains a mystery. Further research is needed to figure out what gives a star the oomph it needs to self-obliterate, and why others follow the path of Obi-Wan.

    Originally published on Live Science.

    Read The Full Article Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Research reveals missed opportunities to save George Floyd’s life

    May 25, 2025

    Pelican eel: The midnight zone ‘gulper’ with a giant mouth to swallow animals bigger than itself

    May 24, 2025

    Are microplastics in ultra-processed food harming your mental health?

    May 23, 2025

    Eldest daughters often carry the heaviest burdens: Insights from Madagascar

    May 21, 2025

    What’s hiding under Antarctica’s ice?

    May 12, 2025

    Failed Soviet probe will soon crash to Earth – and we don’t know where

    May 9, 2025
    popular posts

    These ‘Strange Metals’ Bend the Rules of Physics

    Topshop is Coming to Nordstrom Canada + Other Fashion News

    ‘The Crown’ Races Toward Princess Diana’s Tragic End in Season

    Macroporous silicone chips for decoding microbial dark matter in environmental

    Meredith & Nick Reunite in ‘Grey’s Anatomy’ Season 19 Finale

    Why I love investigative journalism cinema

    Noxious fumes at night aren’t a pollinating moth’s delight

    Categories
    • Books (3,217)
    • Cover Story (2)
    • Events (18)
    • Fashion (2,386)
    • Interviews (43)
    • Movies (2,516)
    • Music (2,794)
    • News (153)
    • Science (4,367)
    • Technology (2,510)
    • Television (3,239)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT