Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»Proof-of-concept study advances potential new way to deliver gene therapy:
    Science

    Proof-of-concept study advances potential new way to deliver gene therapy:

    By AdminNovember 28, 2022
    Facebook Twitter Pinterest LinkedIn Tumblr Email

    Johns Hopkins Medicine researchers say they have successfully used a cell’s natural process for making proteins to “slide” genetic instructions into a cell and produce critical proteins missing from those cells. If further studies verify their proof-of-concept results, the scientists may have a new method for targeting specific cell types for a variety of disorders that could be treated with gene therapies. Such disorders include neurodegenerative diseases that affect the brain, including Alzheimer’s disease, forms of blindness and some cancers.

    For those looking to develop treatments for diseases where cells lack a specific protein, it’s critical to precisely target the cell causing the disease in each structure, such as the brain, to safely kickstart the protein-making process of certain genes, says Seth Blackshaw, Ph.D., professor of neuroscience in the Sol Snyder Department of Neuroscience and member of the Institute for Cell Engineering at the Johns Hopkins University School of Medicine. Therapies that don’t precisely target diseased cells can have unintended effects in other healthy cells, he adds.

    Two methods currently used to deliver protein-making packages into cells vary widely in their effectiveness in both animal models and people. “We wanted to develop a gene expression delivery tool that’s broadly useful in both preclinical and clinical models,” says Blackshaw.

    One current method of sending biochemical packages involves so-called “mini promoters” that direct the expression, or protein-making process of certain stretches of DNA. Blackshaw says this method often fails to express genes in the right cell type.

    Another method, called serotype-mediated gene expression, involves delivering tools that latch on to proteins that stud the surface of certain types of cells. However, Blackshaw says such methods are hit-or-miss in their ability to specifically target only one type of cell, and they often fail to work in people even after successful testing in animal models.

    The current proof-of-principle study, described Oct. 1 in Nature Communications, has roots in previous research by Johns Hopkins Assistant Professor of Pathology Jonathan Ling, Ph.D., who published “maps” depicting how various cell types use alternative splicing of messenger RNA, a cousin of DNA, to construct genetic templates that produce an ever-changing set of proteins in the cell. The changes depend on a cell’s type and location. Cells normally use alternative splicing to vary the types of proteins a cell can make.

    advertisement

    Ling’s maps chart the patterns by which cells cut out introns, or extraneous sections of messenger RNA, and leave only the informative parts of genetic material, or exons, that actually express, or make, proteins.

    However, introns are normally very large — sometimes millions of base pairs long and too big to package in currently available gene expression delivery systems. Ling found some 20% of alternative splicing patterns contained sections of intron DNA small enough to package into the gene expression delivery systems Blackshaw wanted to test.

    Fortunately, for their purposes, the alternative splicing patterns were similar in both mouse and human DNA, and so potentially, applicable to both preclinical research and clinical use.

    Together with then-postdoctoral fellow Alexei Bygrave, now an assistant professor at Tufts University, Blackshaw and Ling made packages of alternative spliced messenger RNA that could be delivered into cells via a benign virus. They dubbed the packages SLED, for splicing-linked expression design.

    When the package slides into a cell, it opens there. Because the SLED system is not naturally integrated into the genome, the research team added genetic “promoters” that spark the production of proteins from the packaged SLED product.

    advertisement

    The Johns Hopkins Medicine researchers constructed SLED systems for laboratory-cultured excitatory neurons and photoreceptors and were able to produce proteins exclusively in those cell types about half the time. Current minipromoter systems typically get the proteins in the right place about 5% of the time.

    The team also injected SLED packages into mice with photoreceptors in the retina that lack a functional PRPH2 gene, which causes retinitis pigmentosa, a disease affecting the retina. The team found evidence that the SLED packages helped produce PRPH2 proteins in the photoreceptors of the treated mice.

    In human ocular melanomas cultured in the laboratory, the scientists delivered SLED packages into only melanoma cells that lack the SF3B1 gene. The SLED package released RNA-producing protein that made the melanoma cells die.

    Blackshaw says the SLED system’s best potential may be in combination with other gene delivery systems, and his lab is looking into methods to miniaturize introns to accommodate larger-size introns into SLED systems.

    Blackshaw and Ling have filed for patents that involve SLED technology.

    The research was funded by the National Institutes of Health (RF1MH123237, R24EY027283, K08EY027093, R01EY033103, 2T32EY007143), a Stein Innovation Award from Research to Prevent Blindness, the Wilmer Eye Institute, the National Science Foundation, a Johns Hopkins Kavli NDI Fellowship, and a Johns Hopkins IDIES Seed Fund.

    Other researchers who contributed to the work include Clayton Santiago, Rogger Carmen-Orozco, Vickie Trinh, Minzhong Yu, Yini Li, Ying Liu, Kyra Bowden, Leighton Duncan, Jeong Han, Kamil Taneja, Rochinelle Dongmo, Travis Babola, Patrick Parker, Lizhi Jiang, Patrick Leavey, Jennifer Smith, Rachel Vistein, Megan Gimmen, Benjamin Dubner, Eric Helmenstine, Patric Teodorescu, Theodoros Karantanos, Gabriel Ghiaur, Patrick Kanold, Dwight Bergles, Ben Langmead, Shuying Sun, Kristina Nielsen, Neal Peachey, Mandeep Singh, W. Brian Dalton, Fatemeh Rajaii and Richard Huganir.

    Read The Full Article Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Melting glaciers could trigger volcanic eruptions around the globe, study finds

    July 8, 2025

    Vapour-sniffing drug detector tested at the US-Mexico border

    July 7, 2025

    Dark dwarfs lurking at the center of our galaxy might hint at the nature of dark matter

    July 7, 2025

    What did ancient Rome smell like? BO, rotting corpses and raw sewage for starters …

    July 6, 2025

    Fig trees may benefit climate by turning carbon dioxide into stone

    July 6, 2025

    Why is there no life on Mars? Rover finds a clue

    July 5, 2025
    popular posts

    Author Bikes 264 Miles to Celebrate Book’s Movie Adaptation

    Lethal second-generation rat poisons are killing endangered quolls and Tasmanian devils

    To meet climate goals, Gulf countries will have to overhaul

    Surge in ocean heat is a sign climate change is accelerating

    Agatha: Coven of Chaos Gets New Title & Release Date

    Black Mail ― Wobbly, fast-paced screed against porn addiction

    Braxton Pope: ‘I love Paul, but is he a dream

    Categories
    • Books (3,274)
    • Cover Story (4)
    • Events (18)
    • Fashion (2,439)
    • Interviews (43)
    • Movies (2,573)
    • Music (2,851)
    • News (155)
    • Politics (1)
    • Science (4,423)
    • Technology (2,566)
    • Television (3,296)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT