Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»Paving the way for large-scale, efficient organic solar cells with
    Science

    Paving the way for large-scale, efficient organic solar cells with

    By AdminOctober 5, 2022
    Facebook Twitter Pinterest LinkedIn Tumblr Email

    Organic solar cells (OSCs) are attractive owing to their lightweight, flexibility, and high power conversion efficiency. However, a lack of morphology control of the active layer makes it challenging to develop OSCs with large active areas. Now, researchers from Gwangju Institute of Science and Technology, Korea take things to the next level by using water treatment for morphology control in the fabrication of active layer thin films, improving the performance and stability of large-area OSCs.

    Organic solar cells (OSCs), which use organic polymers to convert sunlight into electricity, have received considerable attention in recent times for their desirable properties as next-generation energy sources. These include lightweight, flexibility, scalability, and a high power conversion efficiency (>19%). Currently, several strategies exist for enhancing the performance and stability of OSCs. However, a problem that lingers on is the difficulty of controlling the morphology of the active layer in OSCs when scaling up to large areas. This makes it challenging to obtain high-quality active layer thin films and, in turn, fine-tune the device efficiency.

    In a recent study, a team of researchers from the Gwangju Institute of Science and Technology, Korea set out to address this issue. In their work, published in Advanced Functional Materials, they suggested a solution that appears rather counterintuitive at first glance: using water treatment to control the active layer morphology. “Water is known to hinder the performance of organic electronic devices, since it remains in the ‘trap states’ of the organic material, blocking the charge flow and degrading the device performance. However, we figured that using water rather than an organic solvent-based active solution as a medium of treatment method would enable necessary physical changes without causing chemical reactions,” explains Professor Dong-Yu Kim, who headed the study.

    The researchers chose the polymers PTB7-Th and PM6 as donor materials and PC61BM and EH-IDTBR and Y6 as acceptor materials for the active layer. They noticed that inducing a vortex to mix the donor and acceptor materials in the active solution could lead to a well-mixed active solution, yet it was not enough on its own. The active solution was hydrophobic and, accordingly, the researchers decided to use deionized (DI) water and vortices to stir the solution. They let the donor and acceptor materials sit in chlorobenzene (host active solution) overnight, and then added DI water in the solution and stirred it, creating tiny vortices. Due to the hydrophobic nature of the solution, the water pushed on the donor and acceptor molecules, causing them to dissolve more finely into the solution. They then let the solution rest, which caused the water to separate from the solution. This water was then removed and the water-treated active solution was used to prepare thin films of PTB7-Th: PC61BM (F, fullerene), PTB7-Th: EH-IDTBR (NF, fullerene), and PM6: Y6 (H-NF, high-efficiency non-fullerene).

    The researchers then examined the photovoltaic performance of these thin films in a slot-die-coated inverted OSC configuration and compared them with those for OSCs without water treatment.

    “We observed that the water-treated active solution led to a more uniform active layer thin films, which showed higher power conversion efficiencies compared to those not treated with water. Moreover, we fabricated large-area OSC modules with an active area of 10 cm2, which showed a conversion efficiency as high as 11.92% for water-treated H-NF films,” highlights Prof Kim.

    Overall, this study provides a guideline for developing large-scale, efficient OSCs using a remarkably easy, economical, and eco-friendly method, which can open doors to their realization and commercialization.

    Read The Full Article Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Failed Soviet probe will soon crash to Earth – and we don’t know where

    May 9, 2025

    After 170 years, Thoreau’s river observations inform our changing climate

    May 8, 2025

    World’s first silicon-based quantum computer is small enough to plug into a regular power socket

    May 7, 2025

    Nothing is stronger than quantum connections – and now we know why

    May 7, 2025

    Astronomers observe the cooling process of a young stellar object following an accretion burst

    May 6, 2025

    ‘Titanic: The Digital Resurrection’ documentary sheds light on night ship sank

    May 6, 2025
    popular posts

    Spooky, subterranean daddy longlegs with ghostly pale bodies discovered

    The Rookie Spinoff Trailer: Explosions, New Cases, & Niecy Nash!

    8 Great Middle Grade Fantasy Graphic Novels to Read Now

    ‘The Masked Singer’ EP Highlights Season 10 Plans: ‘The Best

    Netflix Schedule July 15-21 2024: New TV Shows & Movies

    Grammys 2024: Tracy Chapman Joins Luke Combs for Surprise ‘Fast

    6 Elegant Handbag Trends to Wear When You Want to Look Chic

    Categories
    • Books (3,212)
    • Cover Story (2)
    • Events (18)
    • Fashion (2,381)
    • Interviews (41)
    • Movies (2,511)
    • Music (2,789)
    • News (153)
    • Science (4,362)
    • Technology (2,505)
    • Television (3,234)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT