Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»New platform could make gene medicine delivery easier and more
    Science

    New platform could make gene medicine delivery easier and more

    By AdminAugust 29, 2022
    Facebook Twitter Pinterest LinkedIn Tumblr Email

    Schematic illustration of multi-step composition screening of lipid nanoparticles (LNPs) for liver-targeted pDNA delivery. In vitro transfection efficiency was assessed for 1080 LNP formulations with different helper lipids and component ratios. The top-performing formulations for each helper lipid series were then tested in clusters for cytotoxicity and in vivo local transfection efficiency via intrahepatic injection. Clusters that induced minimal cytotoxicity and high transfection were screened via i.v. injection, and LNP formulations within the clusters that demonstrated optimal liver transfection were further evaluated individually. Credit: Nature Communications (2022). DOI: 10.1038/s41467-022-31993-y

    The success of COVID-19 vaccines is a great example of gene medicine’s tremendous potential to prevent viral infections. One reason for the vaccines’ success is their use of lipid nanoparticles, or LNPs, to carry delicate messenger RNA to cells to generate and boost immunity. LNPs—tiny fat particles—have become increasingly popular as a carrier to deliver various gene-based medicines to cells, but their use is complicated because each LNP must be tailored specifically for the therapeutic payload it carries.

    A team led by Hai-Quan Mao, a Johns Hopkins materials scientist, has created a platform that shows promise to speed up the LNP design process and make it more affordable. The new approach also can be adapted to other gene therapies.

    “In a nutshell, what we have done is creating a method that screens lipid nanoparticle components and their proportions to quickly help identify and create the optimal design for use with various therapeutic genes,” said Mao, director of the Institute for NanoBioTechnology at Johns Hopkins Whiting School of Engineering and professor in the departments of Materials Science and Engineering and Biomedical Engineering.

    The team’s study was published recently Nature Communications.

    A crucial feature of effective treatments is how long a gene medicine lasts once it reaches the target cell. Unfortunately, the potency of mRNA begins declining within 24 hours of its delivery by LNPs. A promising alternative is plasmid DNA—a sturdier, double-stranded circular DNA that can last for up to seven days and thus has the potential to improve the treatment outcomes of metabolic diseases and infections affecting the liver, where the therapeutic duration is critical.

    The lead author Yining Zhu, an INBT researcher and biomedical engineering Ph.D. student, as well as a team of scientists from Johns Hopkins and the University of Washington, identified the best LNP design for pDNA delivery to liver cells in this work. Their platform screens LNPs step by step, addressing the physiological barriers an LNP encounters as it navigates the body to reach its target. The platform helped the team identify the most effective LNPs from a library of more than 1,000 combinations.

    “This platform is versatile in that it is not merely limited to pDNA delivery, but can be easily extended to the development of LNPs for a wide range of therapeutic gene payloads, as well as alternative delivery routes such as oral, intramuscular injection, or inhalation method,” said Zhu.

    In collaboration with Sean Murphy, associate professor at the University of Washington, and his group, the researchers are now leveraging LNPs identified using the platform to develop a malaria vaccine that targets the disease-causing parasite during its lifecycle in the liver. This screening platform shows great promise to help accelerate other LNP product innovations to further push the bounds of gene medicine, vaccine development, and other novel therapeutics.

    New screening technique could accelerate and improve mRNA therapies More information: Yining Zhu et al, Multi-step screening of DNA/lipid nanoparticles and co-delivery with siRNA to enhance and prolong gene expression, Nature Communications (2022). DOI: 10.1038/s41467-022-31993-y Provided by Johns Hopkins University

    Citation: New platform could make gene medicine delivery easier and more affordable (2022, August 23) retrieved 29 August 2022 from https://phys.org/news/2022-08-platform-gene-medicine-delivery-easier.html

    This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

    Read The Full Article Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Mystery fireball spotted plummeting to Earth over the US

    June 27, 2025

    New IQ research shows why smarter people make better decisions

    June 26, 2025

    ‘God-king’ born from incest in ancient Ireland wasn’t a god or a king, new study finds

    June 26, 2025

    Generation Alpha’s coded language makes online bullying hard to detect

    June 25, 2025

    Pulsars could have tiny mountains

    June 25, 2025

    New ‘breathalyzer’ could detect signs of disease in human breath, scientists say

    June 24, 2025
    popular posts

    Boeing Starliner Mission: The Setbacks That Plagued the Aerospace Giant

    Bean There, Done That: Sabrina Carpenter’s ‘Espresso’ Reclaims U

    Your Brain Could Be Controlling How Sick You Get—And How

    AV Super Sunshine’s “Sink or Swim”

    Chvrches’ Lauren Mayberry Shares First Solo Song “Are You Awake?”

    A New Orleans Noel’s Angela Tucker On Directing Icons, Creating

    Regal Cinemas Parent Company Files For Bankruptcy

    Categories
    • Books (3,251)
    • Cover Story (2)
    • Events (18)
    • Fashion (2,420)
    • Interviews (43)
    • Movies (2,551)
    • Music (2,829)
    • News (154)
    • Science (4,401)
    • Technology (2,544)
    • Television (3,273)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT