Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»Mountain glacier melting is linked to shifting westerlies and likely
    Science

    Mountain glacier melting is linked to shifting westerlies and likely

    By AdminJanuary 7, 2023
    Facebook Twitter Pinterest LinkedIn Tumblr Email
    Mountain glacier melting is linked to shifting westerlies and likely

    The combination of global atmospheric warming and westerly winds shifting toward the poles will likely speed up the recession of mountain glaciers in both hemispheres, according to a UMaine study.

    Mountain glaciers freeze and gain mass when the climate cools, and melt and lose mass when the climate warms. The extent to which the fluctuations in mountain glaciers are reflective of local, regional and even hemispheric climate variations, however, is less clear, which has made it more difficult for scientists to use glacial data to interpret past climate dynamics and make predictions for the future.

    A team of researchers from the University of Maine conducted a National Science Foundation-funded study evaluating how atmospheric conditions are reflected in the mass fluctuations of mid-latitude glaciers on opposite sides of the Earth, comparing global temperature and wind changes with glacier snowline elevations (also called “equilibrium-line altitudes”) in the Southern Alps of New Zealand and in the European Alps observed over the course of nearly four decades. Glacier extent is dependent on the height of the snowline in the atmosphere, below which ice melts, which in turn is determined by the temperature of the atmosphere.

    The data showed that the fluctuations in glacial snowlines reflected temperature changes over large regions of the atmosphere for the two mountain systems studied — even on hemispheric scales. Moreover, the latitudes of westerly wind belts were found to be important for regulating the proportion of cold versus warm air masses that influence glacier melting and freezing.

    “This study really shows how intertwined Earth’s climate system is. At first subtle shifts in the state of the climate system can create waves throughout the system that have far reaching consequences,” says Alexander Audet, principal author of the study, who completed the research as a master’s student at the University of Maine. He is now pursuing a Ph.D. at the University of Nevada, Reno.

    The results show that under global warming, the poleward contraction of the westerly winds belts may accelerate warming — and glacier melting — in the mid latitudes of both hemispheres.

    “These results highlight the sensitivity of Earth’s mountain glaciers to broad-scale atmospheric dynamics. They are incredibly sensitive, physical thermometers, monitoring atmospheric conditions from the sea surface to the top of the troposphere. Reconstructions of past glacier change from glacial landforms may therefore help to provide quantitative insights into how large portions of the atmosphere behaved during past episodes of abrupt climate change, and in turn may offer clues into the climate dynamics of a warming world,” says Aaron Putnam, co-author of the study and associate professor at the UMaine School of Earth and Climate Sciences. George Denton, UMaine professor at the School of Earth and Climate Sciences and the Climate Change Institute, also co-authored the report.

    Other co-authors of the study included Joellen Russell of the University of Arizona; Andrew Lorrey, who received his master’s at UMaine and is now principal scientist of climate and environmental applications at the National Institute of Water and Atmospheric Research (NIWA) in New Zealand; Andrew Mackintosh of Monash University, Australia; and Brian Anderson at the Victoria University of Wellington, New Zealand.

    Story Source:

    Materials provided by University of Maine. Note: Content may be edited for style and length.

    Read The Full Article Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Exposure to microplastic makes animals want to eat it more

    July 21, 2025

    Using drones to safeguard our forests

    July 20, 2025

    Best sleep trackers 2025: From smart rings to Garmin watches

    July 20, 2025

    Your chance of having a boy or girl may not be 50/50

    July 19, 2025

    Crustal faulting generates key energy sources, study shows

    July 19, 2025

    Tuvalu residents prepare for world’s first planned migration of an entire nation — and climate change is to blame

    July 18, 2025
    popular posts

    Microparticles could help prevent vitamin A deficiency: Fortifying foods with

    Scorsese’s Killer of the Flower Moon Trailer Dropped, Starring Robert

    Jonathan Jackson ‘General Hospital’ Exit Explained

    Light pollution found to have far-reaching effects on some North

    Station 19 Season 7 Episode 1 Review: This Woman’s Work

    48 Of The Best Linen Styles To Buy In 2025

    Sara Camposarcone’s Chaotic Closet

    Categories
    • Books (3,300)
    • Cover Story (5)
    • Events (19)
    • Fashion (2,458)
    • Interviews (43)
    • Movies (2,599)
    • Music (2,878)
    • News (155)
    • Politics (2)
    • Science (4,449)
    • Technology (2,592)
    • Television (3,322)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT