Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»Molecular coating cleans up noisy quantum light
    Science

    Molecular coating cleans up noisy quantum light

    By AdminOctober 3, 2025
    Facebook Twitter Pinterest LinkedIn Tumblr Email
    Molecular coating cleans up noisy quantum light


    Molecular coating cleans up noisy quantum light
    Optical micrograph of the monolayer tungsten diselenide sample, with the right-hand side functionalized with PTCDA. Credit: Mark Hersam / Northwestern University

    Quantum technologies demand perfection: one photon at a time, every time, all with the same energy. Even tiny deviations in the number or energy of photons can derail devices, threatening the performance of quantum computers that someday could make up a quantum internet.

    While this level of precision is difficult to achieve, Northwestern University engineers have developed a novel strategy that makes quantum light sources, which dispense single photons, more consistent, precise and reliable.

    In a new study, the team coated an atomically thin semiconductor (tungsten diselenide) with a sheetlike organic molecule called PTCDA. The coating transformed the tungsten diselenide’s behavior—turning noisy signals into clean bursts of single photons. Not only did the coating increase the photons’ spectral purity by 87%, but it also shifted the color of photons in a controlled way and lowered the photon activation energy—all without altering the material’s underlying semiconducting properties.

    The work appears in Science Advances.

    The simple, scalable method could pave the way for reliable, efficient quantum technologies for secure communications and ultra-precise sensors.

    “When there are defects, such as missing atoms, in tungsten diselenide, the material can emit single photons,” said Northwestern’s Mark C. Hersam, the study’s corresponding author. “But these points of single-photon emission are exquisitely sensitive to any contaminants from the atmosphere. Even oxygen in air can interact with these quantum emitters and change their ability to produce identical single photons. Any variability in the number or energy of the emitted photons limits the performance of quantum technologies.

    “By adding a highly uniform molecular layer, we protect the single-photon emitters from unwanted contaminants.”

    Hersam is the chair of the Department of Materials Science and Engineering and Walter P. Murphy Professor of Materials Science and Engineering at Northwestern’s McCormick School of Engineering. He also is director of the Materials Research Science and Engineering Center and a member of the executive committee for the Institute for Quantum Information Research and Engineering.

    Like a particle vending machine, quantum light sources release one—and only one—photon at a time. If a source emits multiple photons at the same time or photons of differing energies, the consequences can be serious. In quantum communication, for example, extra photons limit cybersecurity. In quantum sensing, photons of differing energies can reduce precision.

    As these seemingly futuristic technologies come closer to reality, researchers have struggled to develop photon sources that are both bright and pure—delivering one identical photon, on demand, every time.

    In the new study, Hersam and his team focused on two-dimensional semiconductor tungsten diselenide, which can host atomic-scale defects that emit individual photons. Because tungsten diselenide is atomically thin, its defects and emitters are right on the surface, leaving them exposed to unwanted interactions with atmospheric contaminants. This susceptibility to variability from random atmospheric species limits the reliability of tungsten diselenide for the precise operations required in quantum devices.

    Discover the latest in science, tech, and space with over 100,000 subscribers who rely on Phys.org for daily insights.
    Sign up for our free newsletter and get updates on breakthroughs,
    innovations, and research that matter—daily or weekly.

    To overcome these issues, Hersam’s team coated both sides of tungsten diselenide with PTCDA (perylenetetracarboxylic dianhydride), an organic molecule often found in pigments and dyes. The team deposited the molecules in a vacuum chamber one molecular layer at a time, which ensured the coating remained uniform. The molecular coating protected the surface of tungsten diselenide and its quantum emitting defects, without changing its core electronic structure.

    “It’s a molecularly perfect coating, which presents a uniform environment for the single-photon-emitting sites,” Hersam said. “In other words, the coating protects the sensitive quantum emitters from being corrupted by atmospheric contaminants.”

    By protecting the material from environmental disturbances, the coating dramatically improved the photons’ spectral purity. The coating also caused the photons to shift to a lower energy, which is advantageous in quantum communication devices. The result is a more controlled, reproducible and higher-quality single-photon output, which is critical for quantum technologies.

    “While the coating does interact with the quantum emitting defects, it shifts the photon energy in a uniform way,” Hersam said. “In contrast, when you have a random contaminant interacting with a quantum emitter, it shifts the energy in an unpredictable manner. Uniformity is the key to getting reproducibility in quantum devices.”

    Next, Hersam’s group plans to investigate other semiconducting materials and to explore additional molecular coatings to achieve further control over single-photon-emitting sites. The team also plans to use an electric current to drive quantum emission, which will facilitate networking of quantum computers into a quantum internet.

    “The big idea is that we want to go from individual quantum computers to quantum networks, and ultimately, a quantum internet,” Hersam said. “Quantum communication will occur using single photons. Our technology will help build single-photon sources that are stable, tunable and scalable—the essential components for making that vision a reality.”

    More information:
    Riddhi Ananth et al, Enhanced Spectral Purity of WSe2 Quantum Emitters via Conformal Organic Adlayers, Science Advances (2025). DOI: 10.1126/sciadv.ady7557

    Provided by
    Northwestern University


    Citation:
    Molecular coating cleans up noisy quantum light (2025, October 3)
    retrieved 3 October 2025
    from https://phys.org/news/2025-10-molecular-coating-noisy-quantum.html

    This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
    part may be reproduced without the written permission. The content is provided for information purposes only.

    View Original Source Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Science history: Invention of the transistor ushers in the computing era — Oct. 3, 1950

    October 3, 2025

    Antarctica may have crossed a tipping point that leads to rising seas

    October 2, 2025

    Viewing teens more positively may help their school performance and strengthen family bonds

    October 2, 2025

    Bering Land Bridge emerged much later than we thought it did, new study finds

    October 1, 2025

    We finally know why a belly button becomes an ‘innie’

    October 1, 2025

    Plant receptors for nitrogen-fixing bacteria evolved independently at least three times, study reveals

    September 30, 2025
    popular posts

    SpaceX Must Fix 63 Issues Before Its Starship Can Fly

    Interview with John Etterlee, Author of Retribution

    Lady Gaga Pairs a Sheer Skeleton Dress With 6-Inch Platform

    The Biggest Bookish News of the Week

    Dyson Purifier Hot + Cool Formaldehyde review

    Volcanic Activity on Mars Upends Red Planet Assumptions

    This Stamp-Sized Ultrasound Patch Can Image Internal Organs

    Categories
    • Books (3,448)
    • Cover Story (8)
    • Events (19)
    • Fashion (2,548)
    • Interviews (45)
    • Movies (2,748)
    • Music (3,032)
    • News (161)
    • Politics (6)
    • Science (4,598)
    • Technology (2,743)
    • Television (3,473)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT