Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»Modified CRISPR-based enzymes improve the prospect of inserting entire genes
    Science

    Modified CRISPR-based enzymes improve the prospect of inserting entire genes

    By AdminJanuary 28, 2023
    Facebook Twitter Pinterest LinkedIn Tumblr Email
    Modified CRISPR-based enzymes improve the prospect of inserting entire genes

    3D-model of DNA. Credit: Michael Ströck/Wikimedia/ GNU Free Documentation License

    Many genetic diseases are caused by diverse mutations spread across an entire gene, and designing genome editing approaches for each patient’s mutation would be impractical and costly.

    Investigators at Massachusetts General Hospital (MGH) have recently developed an optimized method that improves the accuracy of inserting large DNA segments into a genome.

    This approach could be used to insert a whole normal or “wild-type” replacement gene, which could act as a blanket therapy for a disease irrespective of a patient’s particular mutation.

    The work involves the optimization of a new class of technologies called CRISPR-associated transposases (CASTs), which are promising tools for large DNA insertions that can be easily targeted to a desired genomic site via a reprogrammable guide RNA.

    However, in their natural state, CASTs have undesirable properties for genome editing applications—namely, suboptimal product purity (how often only the intended DNA sequence is inserted into the genome) and a relatively high rate of unwanted off-target integration at unintended sites in the genome.

    In their research published in Nature Biotechnology, a team led by first author Connor Tou, a graduate student at MIT and MGH, and senior author Ben Kleinstiver, Ph.D., an Assistant Investigator in the Center for Genomic Medicine at MGH and an Assistant Professor at Harvard Medical School, addressed these shortcomings by using protein engineering approaches to modify the properties of CAST systems.

    They found that adding a certain enzyme called a nicking homing endonuclease to CASTs resulted in a dramatic increase in product purity towards the intended insertion.

    Further optimization of CASTs’ structure led to DNA insertions with high integration efficiency at intended genomic targets, with vastly reduced insertions at unwanted off-target sites.

    The researchers called the new and improved system “HELIX,” which is short for Homing Endonuclease-assisted Large-sequence Integrating CAST-compleX.

    “We demonstrated a generalizable approach that can be used to modify a variety of CAST systems into safer and more effective versions that have high product purity and genome-wide specificity,” says Tou.

    “By combining our insights, we created HELIX systems with greater than 96% on-target integration specificity—increased from approximately 50% for the naturally occurring wild-type CAST system. We also determined that HELIX maintains its advantageous properties in human cells,” Tou continues.

    Kleinstiver notes that the technology could have applications beyond the ability to restore normal healthy genes to individuals with disease-causing mutations.

    “Additionally, programmable DNA integration can facilitate cell engineering efforts where installation of large genetic sequences at targeted locations could endow cells with new capabilities while obviating safety, efficacy, and manufacturing issues resulting from traditional random integration approaches,” he says.

    The study is also co-authored by Benno Orr.

    More information: Connor J. Tou et al, Precise cut-and-paste DNA insertion using engineered type V-K CRISPR-associated transposases, Nature Biotechnology (2023). DOI: 10.1038/s41587-022-01574-x

    Provided by Massachusetts General Hospital

    Citation: Modified CRISPR-based enzymes improve the prospect of inserting entire genes into the genome (2023, January 17) retrieved 28 January 2023 from https://phys.org/news/2023-01-crispr-based-enzymes-prospect-inserting-entire.html

    This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

    Read The Full Article Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Orcas filmed making out in the wild for first time

    June 27, 2025

    Mystery fireball spotted plummeting to Earth over the US

    June 27, 2025

    New IQ research shows why smarter people make better decisions

    June 26, 2025

    ‘God-king’ born from incest in ancient Ireland wasn’t a god or a king, new study finds

    June 26, 2025

    Generation Alpha’s coded language makes online bullying hard to detect

    June 25, 2025

    Pulsars could have tiny mountains

    June 25, 2025
    popular posts

    David Harbour Haunts Netflix in the ‘We Have a Ghost’

    Stray Kids Make History Atop Billboard 200 Chart

    Buried review: Did the Anglo-Saxons really invade Britain?

    Changes in Earth’s orbit may have triggered ancient warming event

    Jamie Foxx Gives Update on Spawn Film, Compares it to

    Report: Suicide Squad Game Delayed Yet Again

    Why ‘Daredevil’s Kingpin Was Right

    Categories
    • Books (3,252)
    • Cover Story (2)
    • Events (18)
    • Fashion (2,421)
    • Interviews (43)
    • Movies (2,552)
    • Music (2,830)
    • News (154)
    • Science (4,402)
    • Technology (2,545)
    • Television (3,274)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT