Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»Magnetism helps electrons vanish in high-temp superconductors
    Science

    Magnetism helps electrons vanish in high-temp superconductors

    By AdminApril 21, 2022
    Facebook Twitter Pinterest LinkedIn Tumblr Email

    Superconductors — metals in which electricity flows without resistance — hold promise as the defining material of the near future, according to physicist Brad Ramshaw, and are already used in medical imaging machines, drug discovery research and quantum computers being built by Google and IBM.

    However, the super-low temperatures conventional superconductors need to function — a few degrees above absolute zero — make them too expensive for wide use.

    In their quest to find more useful superconductors, Ramshaw, the Dick & Dale Reis Johnson Assistant Professor of physics in the College of Arts and Sciences (A&S), and colleagues have discovered that magnetism is key to understanding the behavior of electrons in “high-temperature” superconductors. With this finding, they’ve solved a 30-year-old mystery surrounding this class of superconductors, which function at much higher temperatures, greater than 100 degrees above absolute zero. Their paper, “Fermi Surface Transformation at the Pseudogap Critical Point of a Cuprate Superconductor,” published in Nature Physics March 10.

    “We’d like to understand what makes these high-temperature superconductors work and engineer that property into some other material that is easier to adopt in technologies,” Ramshaw said.

    A central mystery to high-temperature superconductors is what happens with their electrons, Ramshaw said.

    “All metals have electrons, and when a metal becomes a superconductor, the electrons pair up with each other,” he said. “We measure something called the ‘Fermi surface,’ which you can think of as a map showing where all the electrons are in a metal.”

    To study how electrons pair up in high-temperature superconductors, researchers continuously change the number of electrons through a process known as chemical doping. In high-temperature superconductors, at a certain “critical point,” electrons seem to vanish from the Fermi surface map, Ramshaw said.

    advertisement

    The researchers zeroed in on this critical point to figure out what makes the electrons vanish, and where they go. They used the strongest steady-state magnet in the world, the 45-tesla hybrid magnet at the National High Magnetic Field Laboratory in Tallahassee, Florida, to measure the Fermi surface of a copper-oxide high temperature superconductor as a function of electron concentration, right around the critical point.

    They found that the Fermi surface changes completely as researchers dial past the critical point.

    “It’s as if you were looking at a real map and all of a sudden most of the continents just disappeared,” Ramshaw said. “That’s what we found happens to the Fermi surface of high-temperature superconductors at the critical point — most of the electrons in a particular region, a particular part of the map, vanish.”

    It was important for the researchers to note not just that electrons were vanishing, but which ones in particular, Ramshaw said.

    They built different simulation models based on several theories and tested whether they could explain the data, said Yawen Fang, doctoral student in physics and lead author of the paper.

    advertisement

    “In the end, we have a winning model, which is the one associated with magnetism,” Fang said. “We are stepping confidently from the well-understood side of the material, benchmarking our technique, into the mysterious side past the critical point.”

    Now that they know which electrons vanish, the researchers have an idea why — it has to do with magnetism.

    “There have always been hints that magnetism and superconductivity are related in high-temperature superconductors, and our work shows that this magnetism seems to appear right at the critical point and gobble up most of the electrons,” Ramshaw said. “This critical point also marks the electron concentration where the superconductivity happens at the highest temperatures, and higher-temperature superconductors are the goal here.”

    Knowing that the critical point is associated with magnetism offers insight into why these particular superconductors have such high transition temperatures, Ramshaw said, and maybe even where to look to find new ones with even higher transition temperatures.

    “It is a 30-year-old debate that precedes our study, and we came up with a straightforward answer,” said Gaël Grissonnanche, a postdoctoral fellow with the Kavli Institute at Cornell for Nanoscale Science and co-first author.

    This research was supported in part by the National Science Foundation, the Canadian Institute for Advanced Research Azrieli Global Scholars Program, and the Kavli Institute for Nanoscale Science at Cornell.

    Read The Full Article Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Wildfire forces evacuation of part of Grand Canyon

    July 11, 2025

    1,600-year-old tomb of Maya city’s first ruler unearthed in Belize

    July 11, 2025

    Peculiar plant could help us reconstruct ancient Earth’s climate

    July 10, 2025

    Chemicals from turmeric and rhubarb could help fight antibiotic-resistant bacteria lurking in wastewater

    July 10, 2025

    Metformin may prevent severe morning sickness

    July 9, 2025

    Herpes virus could soon be approved to treat severe skin cancer

    July 9, 2025
    popular posts

    A Pennsylvania School District’s Proposed Book Challenge Policy is Plagiarized

    Study sheds light on the decline of Minnesota’s moose population

    Supercharging tweak could fill electric car batteries 90% in 10

    Heroes Get Better with Age: 10 Middle-Aged Protagonists in SFF

    Who Did Ted End Up With on ‘How I Met Your Mother’? How the Finale Wrapped Up His Journey

    These Are the 13 Songs Pantera Have Never Played Live

    The Best Sci-Fi and Fantasy Book Deals of August 12, 2024

    Categories
    • Books (3,281)
    • Cover Story (4)
    • Events (18)
    • Fashion (2,446)
    • Interviews (43)
    • Movies (2,580)
    • Music (2,858)
    • News (155)
    • Politics (1)
    • Science (4,430)
    • Technology (2,573)
    • Television (3,303)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT