Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»Learning some new steps in the energy conversion dance
    Science

    Learning some new steps in the energy conversion dance

    By AdminJuly 22, 2022
    Facebook Twitter Pinterest LinkedIn Tumblr Email

    Credit: CC0 Public Domain

    At the heart of energy conversion, electrons and protons move in an intricate, coordinated dance. Chemists at Yale and in Sweden say they may have learned the steps to a new, photo-chemical rhumba.

    The discovery, published in the journal Science, could provide insights into the way the natural world converts solar energy into fuel, such as in photosynthesis. That knowledge may aid in the design of new solar energy technology and solar cells.

    “Although it is rare to discover a new, fundamental type of mechanism, this molecular system was primed to reveal such intriguing behavior,” said Sharon Hammes-Schiffer, Sterling Professor of Chemistry at Yale. “This work was only possible through a strong collaboration between theory and experiment.”

    Hammes-Schiffer is co-corresponding author of the study, along with James Mayer, the Charlotte Fitch Roberts Professor of Chemistry at Yale, and Leif Hammarström, a chemistry professor at Uppsala University, in Sweden.

    The new study expands upon previous work by the researchers, in which they found that certain molecules, when irradiated, can exhibit an effect known as the Marcus inverted region (MIR). In the MIR, an electron transfer reaction, surprisingly, slows down as it becomes energetically more favorable. The MIR effect is considered central to the efficiency of photosynthesis, scientists say, because it slows down energy processes that are wasteful. The previous work revealed the MIR behavior for what they describe as a proton-coupled electron transfer (PCET) reaction.

    However, the researchers also noted that some of the molecules they studied did not show MIR. They suspected there might be a separate, heretofore unknown photo-chemical process at work. Computations from Hammes-Schiffer’s group suggested a competing mechanism in which electronic energy transfer and proton transfer are “coupled.”

    And that is, indeed, what the team found in the new study.

    In a series of photochemical experiments, the researchers dissolved molecules at very low temperatures (77 degrees K, or -321 F) in a type of glass that isolated the new mechanism. After illuminating the cold molecules with light, the team observed fluorescence associated with the new mechanism, which they call proton-coupled energy transfer (PCEnT).

    During PCEnT, the energy from photoexcitation in one fragment of a molecule transfers to a second fragment located in the molecule. This energy transfer does not involve electron transfer between the two fragments; it is coupled to a proton transfer occurring within the second fragment. Thus, the process is not PCET, which involves electron transfer, but rather PCEnT, which involves energy transfer.

    “Electronic energy transfers between molecules or parts of molecules have long been known and are important in many light-driven processes,” said Mayer. “PCEnT seems to be the first example of photochemical energy transfer that is coupled to movement of an atom or a nucleus.”

    Co-first authors of the study are Zhen Tao of Yale and Belinda Pettersson Rimgard of Uppsala University. Additional authors are graduate student Laura Cotter of Yale and former Yale postdoctoral fellow Giovanny Parada.

    Researchers observe Marcus inverted region of charge transfer from low-dimensional semiconductor materials More information: Belinda Pettersson Rimgard et al, Proton-coupled energy transfer in molecular triads, Science (2022). DOI: 10.1126/science.abq5173 Provided by Yale University

    Citation: Learning some new steps in the energy conversion dance (2022, July 21) retrieved 22 July 2022 from https://phys.org/news/2022-07-energy-conversion.html

    This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

    Read The Full Article Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    After 170 years, Thoreau’s river observations inform our changing climate

    May 8, 2025

    World’s first silicon-based quantum computer is small enough to plug into a regular power socket

    May 7, 2025

    Nothing is stronger than quantum connections – and now we know why

    May 7, 2025

    Astronomers observe the cooling process of a young stellar object following an accretion burst

    May 6, 2025

    ‘Titanic: The Digital Resurrection’ documentary sheds light on night ship sank

    May 6, 2025

    Ireland’s iconic megalithic tombs may have had an unexpected function

    May 5, 2025
    popular posts

    Mount Kilimanjaro fire under control: Tanzania authorities

    Everyone’s Favorite ‘Simpsons’ Meme is Becoming a Chia Pet

    Surprising behavior in one of the least studied mammals in

    Groundbreaking Thorium-229 Nuclear Clock May Reveal Changes in Fundamental Constants

    ‘Man in the Moon’ Older Than Scientists Thought

    Catherine, Called Birdy review – medieval dramedy with charm to

    Direct-to-Consumer Is Dying. It’s Time for a New Paradigm

    Categories
    • Books (3,211)
    • Cover Story (2)
    • Events (18)
    • Fashion (2,380)
    • Interviews (41)
    • Movies (2,510)
    • Music (2,788)
    • News (153)
    • Science (4,361)
    • Technology (2,502)
    • Television (3,233)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT