Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»James Webb telescope spots ‘feasting’ black hole eating 40 times faster than should be possible
    Science

    James Webb telescope spots ‘feasting’ black hole eating 40 times faster than should be possible

    By AdminNovember 5, 2024
    Facebook Twitter Pinterest LinkedIn Tumblr Email
    James Webb telescope spots ‘feasting’ black hole eating 40 times faster than should be possible



    While peering into the early universe with the James Webb Space Telescope (JWST), astronomers keep finding monster black holes that seem to be growing too big, too fast for cosmological models to explain. Now, new observations of an exceptionally ravenous, rule-breaking object could help reveal why.

    Using JWST to get a closer look at ancient galaxies known to host intense, X-ray emitting objects, researchers uncovered evidence of a supermassive black hole that appears to be gobbling up matter at more than 40 times its theoretical limit. Named LID-568 and observed just 1.5 billion years after the Big Bang, the object has been dubbed the fastest-feeding black hole in the early universe.

    The discovery of this superlatively sloppy eater could be proof that some black holes are capable of temporarily surpassing their theoretical feeding limits — known as the Eddington limit — enabling them to grow incredibly quickly over short periods of time. The team’s research was published Nov. 4 in the journal Nature Astronomy.

    “This black hole is having a feast,” study co-author Julia Scharwächter, an astronomer with the International Gemini Observatory and the National Science Foundation’s NOIRLab, said in a statement. “This extreme case shows that a fast-feeding mechanism above the Eddington limit is one of the possible explanations for why we see these very heavy black holes so early in the universe.”

    Related: James Webb telescope confirms there is something seriously wrong with our understanding of the universe

    In the new research, the team used JWST’s infrared vision to study several galaxies with exceptionally bright X-ray emissions that were previously spotted by NASA‘s Chandra X-ray Observatory. Powerful emissions like these are often associated with actively feeding black holes, which can gobble up matter so forcefully that the disks of infalling material around them heat up and glow, sometimes surpassing the brightness of entire galaxies. In some cases, some of that infalling matter may escape in hot, fast-moving outflows that help the black hole disk system conserve angular momentum while feeding, according to the National Radio Astronomy Observatory.

    When observing LID-568 with JWST, the researchers discovered outflows of gas surrounding the black hole unlike anything ever seen. The speed and size of these outflows pointed to a gargantuan black hole feeding episode, in which the cosmic monster briefly ate at a rate that far exceeded its Eddington limit. (Each black hole has its own Eddington limit, which relates an object’s luminosity, or brightness to the speed at which it can absorb mass.)

    Get the world’s most fascinating discoveries delivered straight to your inbox.

    This single feeding frenzy may have given the ancient black hole most of its observed mass, the researchers found.

    “The discovery of a super-Eddington accreting black hole suggests that a significant portion of mass growth can occur during a single episode of rapid feeding,” lead study author Hyewon Suh, also an astronomer with the International Gemini Observatory and NOIRLab, said in the statement.

    The discovery not only suggests that black holes are capable of exceeding their Eddington limits — and gives astronomers a prime target to study the phenomenon — but also offers a tantalizing clue to one of JWST’s enduring mysteries. If black holes can exceed their self-imposed feeding limits to absorb tremendous amounts of mass in short periods of time, this could help reveal a mechanism that might be fueling the oversize black holes recently spotted by JWST in the very early universe.

    To further investigate this potential mechanism, the team is planning follow-up studies of LID-568 with JWST.

    View Original Source Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Failed Soviet probe will soon crash to Earth – and we don’t know where

    May 9, 2025

    After 170 years, Thoreau’s river observations inform our changing climate

    May 8, 2025

    World’s first silicon-based quantum computer is small enough to plug into a regular power socket

    May 7, 2025

    Nothing is stronger than quantum connections – and now we know why

    May 7, 2025

    Astronomers observe the cooling process of a young stellar object following an accretion burst

    May 6, 2025

    ‘Titanic: The Digital Resurrection’ documentary sheds light on night ship sank

    May 6, 2025
    popular posts

    Can the UK’s new ARIA science agency deliver ‘moonshot’ technologies?

    Hungryroot Meal Kit Review (2025): AI-Guided Menu

    See the Sharp New Image of an Iconic Black Hole

    Days of Our Lives Review Week of 5-02-22: Will Evil

    Labeling key to success of software company innovations: ‘Category Innovation’

    Ticket to Paradise review — A trifle unworthy of its

    Golden river of toxic waste from South African mining disaster

    Categories
    • Books (3,212)
    • Cover Story (2)
    • Events (18)
    • Fashion (2,381)
    • Interviews (41)
    • Movies (2,511)
    • Music (2,789)
    • News (153)
    • Science (4,362)
    • Technology (2,503)
    • Television (3,234)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT