Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»Implementation and reconfiguration of magnetic skyrmions-based logic gates in one
    Science

    Implementation and reconfiguration of magnetic skyrmions-based logic gates in one

    By AdminMay 21, 2022
    Facebook Twitter Pinterest LinkedIn Tumblr Email

    (a) Illustrations of Néel-type magnetic skyrmions with different topological charge and helicity number. (b) Skyrmions-based single-nanotrack logic device with two inputs at both ends and one output in the middle. Credit: Science China Press

    In one single nanotrack, a research team has achieved the annihilation, fusion and shunting of two skyrmions with opposite chirality via local reversal of the DMI, as well as the pinning effect of energy barriers on skyrmions.

    This study was led by Prof. Hongxin Yang (Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences) and Dr. Dongxing Yu (Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences). First-principles calculations were conducted by Prof. Hongxin Yang, and micromagnetic simulations of magnetic skyrmion dynamics were performed by Dongxing Yu.

    “These dynamical behaviors of magnetic skyrmions are very feasible for the design of magnetic skyrmion-based spintronic devices such as logic gates, transistors, complementary racetrack memory, etc.,” Prof. Hongxin Yang says. With the increase of chiral multiferroic materials and the emergence of DMI chirality switching mechanism, the magnetic skyrmions-based logic gates will hopefully be simplified to one single nanotrack and achieve the complete reconstruction of Boolean logic gates.

    Dr. Dongxing Yu, Prof. Hongxin Yang, Prof. Mairbek Chshiev, together with Nobel Laureate physicist Prof. Albert Fert, explored the connection between the reconstruction of logic gates and the dynamics of magnetic skyrmions. By locally controlling the DMI chirality, the team reconstructed the non-volatile energy barriers to switch various magnetic skyrmion dynamic phenomena, allowing the implementation and reconfiguration of logic functions including AND, OR, NOT, NAND, NOR, XOR and XNOR.

    XOR/OR/NAND operations of the reconfigurable nanotrack by turning the switch (a) to idle, (b) to 1 and (c) to 2, respectively. XNOR/NOR/AND functions can be converted from the above logic gates by switching the magnetization of the fixed layer in the magnetic tunnel junction (output-MTJ) and only half of the NAND gate can be used to realize the NOT gate. Credit: Science China Press

    “Any two of these functions or operations can be easily transformed from one to another by switching the chirality of the DMI using voltage control in one single nanotrack, and skyrmions can be recycled after each operation,” Dongxing Yu says. Based on the pinning and depinning function of non-volatile energy barriers, the team also simulated the “on” and “off” states of a skyrmion transistor and skyrmion bit reset. “This will be a beneficial exploration of the construction of spintronic devices by manipulating topologically non-trivial magnetic structures such as magnetic skyrmions,” Hongxin Yang says.

    Compared to other reconfigurable logic gates requiring a combination of multiple strips or a cascade of simple functions to perform two or more logic operations, this study realized the implementation and reconfiguration of seven kinds of logic functions into one single nanotrack through micromagnetic simulations, thereby further simplifying the design of the spin-based logic devices and promoting the potential application of magnetic skyrmions-based logic gates in the field of information processing.

    The research was published in National Science Review.

    Deterministically integrated manipulation of magnetic skyrmions achieved in nanostructured device More information: Dongxing Yu et al, Skyrmions-based logic gates in one single nanotrack completely reconstructed via chirality barrier, National Science Review (2022). DOI: 10.1093/nsr/nwac021 Provided by Science China Press

    Citation: Implementation and reconfiguration of magnetic skyrmions-based logic gates in one single nanotrack (2022, May 6) retrieved 21 May 2022 from https://phys.org/news/2022-05-reconfiguration-magnetic-skyrmions-based-logic-gates.html

    This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

    Read The Full Article Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Your chance of having a boy or girl may not be 50/50

    July 19, 2025

    Crustal faulting generates key energy sources, study shows

    July 19, 2025

    Tuvalu residents prepare for world’s first planned migration of an entire nation — and climate change is to blame

    July 18, 2025

    AI demand could drive up US electricity bills – even if it fizzles

    July 18, 2025

    International study shows impact of social media on young people

    July 17, 2025

    Best spotting scopes in 2025 for birdspotting and wildlife watching

    July 17, 2025
    popular posts

    Scientists need help to save nature

    Study reveals ‘cozy domesticity’ of prehistoric stilt-house dwellers in England’s

    Interview with Kylie Kent, Author of Tethered To Him

    10 of the Most-Anticipated Audiobooks of January 2024

    Fear the Walking Dead Season 8 Episode 8 Review: Iron

    Where to Buy Taylor Swift’s Blue Reformation Corset Top

    Is It Finally Time To Apologize To Kristen Stewart?

    Categories
    • Books (3,297)
    • Cover Story (5)
    • Events (19)
    • Fashion (2,457)
    • Interviews (43)
    • Movies (2,596)
    • Music (2,875)
    • News (155)
    • Politics (2)
    • Science (4,446)
    • Technology (2,589)
    • Television (3,319)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT