Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»How Zombies Can Help Prevent the Next Pandemic
    Science

    How Zombies Can Help Prevent the Next Pandemic

    By AdminAugust 12, 2022
    Facebook Twitter Pinterest LinkedIn Tumblr Email

    Most people know of some of the tools that help us fight pandemics: safe and effective vaccines, antiviral and antibody treatments, and for respiratory infections such as COVID, public-health measures such as masks.

    But they have overlooked one tool that might help us prevent the next pandemic: zombie viral genomes.

    Zombie viruses are the crippled byproducts of viral infection that can’t reproduce without help. They are intriguing from a therapeutic perspective because they seem to do several things to lessen disease: they prompt the immune system to act, and, without adding to disease themselves, they suck up some of the machinery that their active counterparts use to copy themselves during an infection. They also cloak themselves in proteins that normally wrap around viral genomes, resulting in viruslike particles that can tag along when their operational counterparts spread. A better understanding of how these zombies work could allow researchers like me to engineer zombies as treatments so that when the next pandemic virus hits, we can give people medicinal zombies to keep them from getting really sick.

    Viruses multiply by replicating themselves with lightning-fast speed inside the cells they infect. For the viral machinery that makes copies of the virus’s genome that get packed into new particles, however, this speedy production can be glitchy. This is often because the machinery lacks a proofreading mechanism that scans that copied genome for mistakes, but even the viruses that can proofread make mistakes. When these glitches happen, the machinery introduces mutations, like ones that gave rise to highly contagious SARS-CoV-2 variants such as Delta and Omicron. But even bigger gaffes often occur, creating zombie genomes that lack the replication or packaging functions a virus needs for productive infection. So when the zombie genome is packaged and that crippled viral particle enters a healthy host cell, it appears dead, unable to copy itself and make new zombies.

    But when a zombie viral genome is delivered into a cell that is already infected by a fully functional virus, then—like a zombie—it can spring to life. It does this by diverting the viral machinery of functional viruses to replicate itself, making virus-like zombies that can grow and spread, often at the expense of infectious virus. So, the zombie infects, co-opts the replication machinery of active viruses like a parasite, and at a minimum, seems to not make the ongoing viral illness worse.

    Take the influenza virus, for example. Molecular virologist Ana Falcón at the National Center for Biotechnology in Spain has found links between zombie viral genomes and the severity of disease. People who carried more influenza zombie genomes avoided intensive care units, while those who carried fewer zombie genomes suffered from more severe disease, sometimes ending up in the hospital and dying. Having more zombie genomes can trigger protective immune responses, leading to less severe disease.

    Zombie viral genomes associated with other respiratory infections are also linked to disease severity, but the outcomes can be good or bad. Immunologist Carolina López at Washington University in St. Louis showed that the presence of zombie viral genomes early in respiratory syncytial virus infection, during the first three days of a one- to two-week infection, was linked to overall lower virus levels and less severe disease. Yet the prolonged presence of zombie viral genomes, beyond six days of infection, has been associated with higher overall virus levels, greater activation of immune responses, and greater severity of disease. Together, these results indicate potentially complex roles of zombie viruses in the severity of disease, depending on their effects on both virus production and immune activation.

    What about zombies of SARS-CoV-2, the RNA virus that causes COVID? By now, researchers have genetically analyzed countless nasal swabs from people with COVID across the globe to reveal Delta, Omicron and many other variants. But to make these discoveries, the researchers have sequenced full-length RNA genomes; defective or incomplete viral genomes can complicate analyses, so they are typically ignored or discarded. For us zombie virus researchers, these defective genomes are a goldmine.

    Genomics expert Chia-Lin Wei of the Jackson Laboratory in Connecticut has discovered several hundred candidate zombie viral genomes occurring in swabs from people with COVID. Some zombie genomes carried deletions that were linked exclusively to either symptomatic or asymptomatic COVID. Disease symptoms like tissue inflammation can be linked to cell-level defenses that trigger virus-producing cells to kill themselves, so zombie viruses that fail to trigger such defenses also fail to cause inflammation, and their infections are asymptomatic. For viruses, the ability to cause mild or asymptomatic disease can be beneficial, allowing its human hosts to go about their daily interactions with others and more widely spread the virus.

    For now, such observations raise more questions than answers. How do zombie viruses of SARS-CoV-2 arise, and how do they affect the severity of COVID-19 in individual people? What roles will zombie viruses play in the behavior of the current pandemic in the coming months or years? More broadly, what roles might zombie viruses play in diseases caused by other viruses that could cause pandemics, like Ebola, influenza or Zika? And how might we harness zombies to protect against future pandemics caused by novel viruses?

    Given the protection zombie viruses might provide, it’s reasonable to think they could help treat COVID-19 or other infection by future pandemic viruses. Virus expert Leor Weinberger of the University of California, San Francisco, has recently engineered zombie particles of SARS-CoV-2 and showed their protective effects against infection in hamsters. Importantly, zombie particles suppressed the severity of COVID-like disease when given before or after infection. Longer-term studies showed such particles might protect against variants like Delta, Omicron or others. Finally, virologist Raul Andino, also at U.C. S.F., has discovered that poliovirus zombie genomes can stimulate mouse immune responses and protect those infected from catching not only poliovirus, but also influenza and SARS-CoV-2.

    These findings provide exciting evidence for the holy grail of vaccine development: broad protection against diverse viruses. To grow and spread, all viruses re-program their host cells to make virus proteins; infected cells respond by activating defenses to slow or stop making those proteins. Viruses escalate the arms race by inhibiting the signals cells used to slow or stop making proteins. The recent studies in mice suggest how zombie genomes may ultimately give the upper hand to the cells, shutting down production of proteins viruses need to grow and spread.

    If zombie genomes can stimulate protective immune responses in not only mice but also humans, a single dose might someday protect us from new variants of influenza virus, coronavirus or other viruses. More safety and efficacy studies will be needed to assess the capacity of engineered zombie particles to treat or prevent disease before they can be considered for human use. For now, zombie viruses offer an interesting new idea in protecting us against future pandemics.

    This is an opinion and analysis article, and the views expressed by the author or authors are not necessarily those of Scientific American.

    Read The Full Article Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    New IQ research shows why smarter people make better decisions

    June 26, 2025

    ‘God-king’ born from incest in ancient Ireland wasn’t a god or a king, new study finds

    June 26, 2025

    Generation Alpha’s coded language makes online bullying hard to detect

    June 25, 2025

    Pulsars could have tiny mountains

    June 25, 2025

    New ‘breathalyzer’ could detect signs of disease in human breath, scientists say

    June 24, 2025

    Mice with two fathers have their own offspring for the first time

    June 24, 2025
    popular posts

    Spotify Active Users Rise to 465 Million, Profits Miss Expectations

    How Meghan Markle Celebrated Her 41st Birthday

    How to Stay Informed Without Getting Paralyzed by Bad News

    ‘Top Gun’ Passes ‘Titanic’ on All-Time Box Office List

    Piggy review – gory subvers horror about fatphobia and bullying

    6 probiotic foods to support your gut

    Weezer, Beck, and St

    Categories
    • Books (3,250)
    • Cover Story (2)
    • Events (18)
    • Fashion (2,419)
    • Interviews (43)
    • Movies (2,550)
    • Music (2,828)
    • News (154)
    • Science (4,400)
    • Technology (2,543)
    • Television (3,272)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT