Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»Fully mature hair follicles grown in cultures
    Science

    Fully mature hair follicles grown in cultures

    By AdminNovember 15, 2022
    Facebook Twitter Pinterest LinkedIn Tumblr Email

    A representative long sprouting hair follicle generated from hair follicloids after an extended period of culture. Credit: Yokohama National University

    A team of researchers from Japan studying the processes of hair follicle growth and hair pigmentation has successfully generated hair follicles in cultures. Their in vitro hair follicle model adds to the understanding of hair follicle development which could contribute to development of useful applications in treating hair loss disorders, animal testing, and drug screenings.

    Their findings were published in Science Advances on October 21.

    As an embryo develops, interactions occur between the outer layer of skin called the epidermal layer and the connective tissue called mesenchyme. These interactions work kind of like a messenger system to trigger hair follicle morphogenesis. Morphogenesis is the process in an organism where cells are organized into tissues and organs.

    During the last several decades, scientists have explored the crucial mechanisms related to hair follicle development using animal models. Because fully understanding these mechanisms for hair follicle development remains challenging, hair follicle morphogenesis has not been successfully reproduced in a laboratory culture dish.

    More recently organoid cultures have received widespread attention. Organoids are tiny, simple versions of an organ—scientists produce and use them to study tissue and organ development and pathology in a laboratory culture dish. “Organoids were a promising tool to elucidate the mechanisms in hair follicle morphogenesis in vitro,” said Tatsuto Kageyama, an assistant professor with the faculty of engineering at Yokohama National University.

    The research team fabricated hair follicle organoids by controlling the structure generated from the two types of embryonic cells using quite a low concentration of extracellular matrices. The extracellular matrix is the framework in the body that provides structure for cells and tissue. The extracellular matrices adjusted the spacing between the two types of embryonic cells from a dumbbell-shape to core-shell configuration. Newly formed hair follicles with typical features emerged in core-shell-shape groups. These core-shell-shape groups increase the contact area between two cell regions to enhance the mechanisms that contribute to hair follicle growth.

    The organoid culture system the research team developed generated hair follicles and hair shafts with almost 100 percent efficiency. The hair follicle organoids produced fully mature hair follicles with long hair shafts (approximately 3 mm length on 23 days of culture). As this growth occurred, the researchers could monitor hair follicle morphogenesis and hair pigmentation in vitro and understand the signaling pathways involved in the processes.

    The researchers examined the feasibility of hair follicle organoids for drug screening and regenerative medicine. Then they added a melanocyte-stimulating drug, that plays a key role in producing hair color pigmentation, into the culture medium. With the addition of this drug, the researchers significantly improved the hair pigmentation of the hair-like fibers. Furthermore, by transplanting the hair follicle organoids, they achieved efficient hair follicle regeneration with repeating hair cycles. They believe the in vitro hair follicle model could prove valuable for better understanding of hair follicle induction, for evaluating hair pigmentation and hair growth drugs, and for regenerating hair follicles.

    The researchers’ findings could also prove to be relevant to other organ systems and contribute to the understanding of how physiological and pathological processes develop. Looking ahead to future research, the team plans to optimize their organoid culture system with human cells. “Our next step is to use cells from human origin, and apply for drug development and regenerative medicine,” said Junji Fukuda, a professor with the faculty of engineering at Yokohama National University.

    Their future research could eventually open up new research avenues for the development of fresh treatment strategies for hair loss disorders, such as androgenic alopecia that is common in both men and women.

    More information: Tatsuto Kageyama et al, Reprogramming of three-dimensional microenvironments for in vitro hair follicle induction, Science Advances (2022). DOI: 10.1126/sciadv.add4603. www.science.org/doi/10.1126/sciadv.add4603

    Provided by Yokohama National University

    Citation: Fully mature hair follicles grown in cultures (2022, October 21) retrieved 15 November 2022 from https://phys.org/news/2022-10-fully-mature-hair-follicles-grown.html

    This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

    Read The Full Article Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Failed Soviet probe will soon crash to Earth – and we don’t know where

    May 9, 2025

    After 170 years, Thoreau’s river observations inform our changing climate

    May 8, 2025

    World’s first silicon-based quantum computer is small enough to plug into a regular power socket

    May 7, 2025

    Nothing is stronger than quantum connections – and now we know why

    May 7, 2025

    Astronomers observe the cooling process of a young stellar object following an accretion burst

    May 6, 2025

    ‘Titanic: The Digital Resurrection’ documentary sheds light on night ship sank

    May 6, 2025
    popular posts

    Scientists unlock key to breeding ‘carbon gobbling’ plants with a

    Tim Robinson Shares New I Think You Should Leave Season

    A summer with Satyajit Ray

    “You Only Get One Shot” at Life, Says 9/11 Fire Captain and Cross-Country Cyclist

    Books To Read If You Like Sylvia Day

    Get Ready to Be Obsessed with This New Kitchen Collection

    ‘The Jinx

    Categories
    • Books (3,212)
    • Cover Story (2)
    • Events (18)
    • Fashion (2,381)
    • Interviews (41)
    • Movies (2,511)
    • Music (2,789)
    • News (153)
    • Science (4,362)
    • Technology (2,503)
    • Television (3,234)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT