Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»For the 1st time, scientists accidentally measure the swirling ring
    Science

    For the 1st time, scientists accidentally measure the swirling ring

    By AdminSeptember 10, 2023
    Facebook Twitter Pinterest LinkedIn Tumblr Email
    For the 1st time, scientists accidentally measure the swirling ring

    An artist’s interpretation of a black hole’s accretion disk might look like. (Image credit: Getty Images)

    For the first time ever, scientists have measured the exact size of the disk of matter swirling around a supermassive black hole. The serendipitous finding could help expand our knowledge of how these cosmic juggernauts grow and how the galaxies that surround them evolve over time.

    Accretion disks are massive swirling rings of superheated gas, dust and plasma that rotate around black holes or other enormous cosmic objects, such as pulsars. The disks around black holes are made from remnants of shredded stars, exoplanets and other matter that was ripped apart as it was pulled toward the event horizon — the point beyond which nothing, not even light, can escape the black hole’s gravitational pull. As accretion disks rotate, they emit a range of electromagnetic radiation including X-rays, infrared radiation, radio waves and visible light, making them the only part of a black hole that astronomers can detect.    

    Related: Do black holes really suck in matter?

    Accretion disks are most clearly visible in the infrared spectrum. The spinning masses emit what researchers call a double-peak, which is a pair of energy spikes from excited hydrogen gas emitted by both halves of an accretion disk — the half that is spinning away from the observer and the half that is spinning toward them. These double-peaks originate from the edge of an accretion disk that is closest to the event horizon, which means they can show where the spinning disks start but not where they end.

    But in a new study published Aug. 8 in The Astrophysical Journal Letters, researchers detected a second double-peak coming from the outside edge of an accretion disk surrounding the supermassive black hole III Zw 002, which is located more than 22 million light-years from Earth and is at least 400 million times the mass of our sun. Based on the pair of double-peaks they spotted, researchers calculated that the radius of the accretion disk around III Zw 002 is around 52.4 light-days, which is more than 9,000 times the distance from Earth to the sun.

    This diagram shows how a standard infrared double-peak is produced by a black hole’s accretion disk. (Image credit: NOIRLab/NSF/AURA/P. Marenfeld)

    The researchers had not been searching for the second double band around III Zw 002 when they made the find. Instead, the team was collecting data to confirm the presence of the accretion disk, which was first detected in 2003. 

    Researchers used the Gemini Near-Infrared Spectrograph (GNIRS) from the Gemini North telescope in Hawaii to capture the new data. GNIRS measures a slightly wider range of wavelengths than regular infrared light usually appears in and can detect emissions in different wavelengths simultaneously, which is what enabled the team to spot the second double-peak. 

    Related: First-ever close-up of a supermassive black hole sharpened to ‘full resolution’ by AI

    At first, the researchers didn’t believe what they’ found, but it soon became apparent to them. “We reduced the data many times thinking it could be a mistake, but every time we saw the same exciting result,” study co-author Alberto Rodríguez-Ardila, an astronomer at the Canary Islands Astrophysics Institute, said in a statement.

    The researchers believe the discovery could play an important role in helping to uncover the mysteries of supermassive black holes. 

    “The detection of such double-peaked profiles puts firm constraints on the geometry of a region that is otherwise not possible to resolve,” Rodríguez-Ardila said. This will enable researchers to observe the “feeding process and the inner structure of an active galaxy” for the first time, he added.

    The team will continue to monitor the accretion disk around III Zw 002 to see how it grows over time.

    This is not the only major breakthrough scientists have made in understanding accretion disks this year. In May, researchers revealed that they had created artificial accretion disks out of plasma in the lab for the first time ever. The fake rings only last for a fraction of a second but hint at how accretion disks are formed.

    Read The Full Article Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    James Watson, co-discoverer of DNA’s double helix, has died aged 97

    November 9, 2025

    Bacteria use sugar-fueled currents and molecular gearboxes to move without flagella

    November 8, 2025

    James Watson, controversial co-discoverer of DNA’s structure, dies at 97

    November 8, 2025

    Is the Mothership Approaching Earth?

    November 8, 2025

    Enceladus’s ocean may be even better for life than we realised

    November 7, 2025

    Children’s books feature tidy nuclear families—but the animal kingdom tells a different story

    November 7, 2025
    popular posts

    Alastair Reynolds: An exclusive short story for New Scientist

    Kim Kardashian Goes Instagram Official With Pete Davidson

    Baz Luhrmann Wants to Release an ‘Elvis’ Cut With Full

    Biden Pours $623 Million into Electric Vehicle Charging Void

    Watch MIKE’s New “No Curse Lifted (Rivers of Love)” Video

    BTC, ETH Among Cryptocurrencies Seeing Gains; Stablecoins Face Minor Dips

    Regé-Jean Page and Emily Brown Signal They’re Going Strong During

    Categories
    • Books (3,521)
    • Cover Story (8)
    • Events (20)
    • Fashion (2,587)
    • Interviews (50)
    • Movies (2,821)
    • Music (3,107)
    • News (163)
    • Politics (6)
    • Science (4,673)
    • Technology (2,816)
    • Television (3,546)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT