Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»Earthly Microbes Might Survive on Mars for Hundreds of Millions
    Science

    Earthly Microbes Might Survive on Mars for Hundreds of Millions

    By AdminNovember 2, 2022
    Facebook Twitter Pinterest LinkedIn Tumblr Email

    One of Earth’s toughest microbes could survive on Mars, lying dormant beneath the surface, for 280 million years, new research has shown. The findings increase the probability that microbial life could still exist on the Red Planet.

    Deinococcus radiodurans, nicknamed “Conan the Bacterium,” is one of the world’s toughest microbes, capable of surviving in radiation strong enough to kill any other known life-form. Experiments have now shown that if Conan the Bacterium or a similar microbe existed on Mars, it could survive 33 feet (10 meters) beneath the surface, frozen and dried out, for 280 million years.

    In a study led by Michael Daly, who is a professor of pathology at Uniformed Services University of the Health Sciences in Maryland and a member of the National Academies’ Committee on Planetary Protection, scientists tested half a dozen microbes and fungi—all “extremophiles” able to live in environments where other organisms die—to see how long they could survive in an environment that simulated the mid-latitudes of Mars. During the experiments, organisms faced temperatures as low as minus 80 degrees Fahrenheit (minus 63 degrees Celsius) and exposure to ultraviolet light, gamma rays and high-energy protons mimicking the constant bombardment of Mars by solar ultraviolet light and cosmic radiation sleeting down from space. 

    After the bacteria and fungi had been exposed to various radiation levels in the experiment, Daly’s team measured how much manganese antioxidants had accumulated in the cells of the microbes. Manganese antioxidants form as a result of radiation exposure, and the more that form, the more radiation the microbes can resist. 

    Conan the Bacterium was the clear winner. The researchers found that Conan the Bacterium could absorb as much as 28,000 times more radiation than what a human can survive. This measurement allowed Daly’s team to estimate how long the microbe could survive at different depths on Mars.

    Previous experiments, in which Conan the Bacterium had been suspended in liquid water and subjected to radiation like that found on Mars, had indicated that the microbe could survive below the surface of Mars for 1.2 million years. 

    However, the new tests, in which the microbe was frozen and dried out to mimic the cold and dry conditions on Mars, suggested that Conan the Bacterium would be able to survive 280 million years on Mars if buried at a depth of 33 feet. This lifespan is reduced to 1.5 million years if buried just 4 inches (10 centimeters) below the surface, and just a few hours on the surface, which is bathed in ultraviolet light.

    Mars’ environment 280 million years ago was pretty much the same as it is now—cold and dry—and you have to go back much further to find a time when it was warmer and wet and might have allowed hypothetical Mars life to establish itself in the first place. Daly acknowledges this complication, but thinks there are ways life could have found environments in which to proliferate since Mars’ dramatic climate change. 

    “Although Deinococcus radiodurans buried in the Martian subsurface could not survive dormant for the estimated 2 to 2.5 billion years since flowing water disappeared on Mars, such Martian environments are regularly altered and melted by meteorite impacts,” he said in a statement. “We suggest that periodic melting could allow intermittent repopulation and dispersal.”

    Consequently, future missions to Mars looking for life might want to target large craters younger than 280 million years. Gale Crater, which NASA’s Curiosity rover is exploring, is 3.8 billion years old; Jezero Crater, where the Perseverance rover is working, is likely a similar age. However, younger craters do abound; for example, Tooting Crater, which is 17 miles (28 km) wide in Amazonis Planitia west of Olympus Mons, is thought to be only hundreds of thousands of years old.

    The research also determined why Conan the Bacterium is so resistant to radiation. The scientists found that chromosomes and plasmids, which carry genetic information, in the microbe’s cells are linked together, which keeps these structures aligned and prevents irradiated cells from breaking down until they can be repaired.

    This durability means that future missions, such as the European Space Agency’s Rosalind Franklin rover that will dig deep into Mars in search of microbial life, could well find Conan the Bacterium’s Martian cousin, should it exist. 

    Sample-return missions could even bring these microbes back to Earth; experiments on the International Space Station have even confirmed that Conan the Bacterium can survive for at least three years in space. However, we’ll need to be careful not to contaminate Earth with Martian microbes.

    And future Red Planet missions, both crewed and robotic, also need to be wary of contaminating Mars with Earthly microbes.

    “Our model organisms serve as proxies for both forward contamination of Mars, as well as backward contamination of Earth, both of which should be avoided,” Daly said.

    While robotic missions to Mars are sterilized before launch, the sterilization process is not perfect and some microbes can still hitch a ride to the Red Planet. If human beings visit Mars, they will bring many more microbes with them, which could escape out into the Martian environment and either destroy the native microbial biosphere or confuse experiments looking for life on Mars. 

    As experiments such as this increase the chances of indigenous life existing on Mars, scientists will need to ask additional important questions about how we can protect any potential life that we find there.

    The study is detailed in a paper published Tuesday (Oct. 25) in the journal Astrobiology.

    Copyright 2022 Space.com, a Future company. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.

    Read The Full Article Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Failed Soviet probe will soon crash to Earth – and we don’t know where

    May 9, 2025

    After 170 years, Thoreau’s river observations inform our changing climate

    May 8, 2025

    World’s first silicon-based quantum computer is small enough to plug into a regular power socket

    May 7, 2025

    Nothing is stronger than quantum connections – and now we know why

    May 7, 2025

    Astronomers observe the cooling process of a young stellar object following an accretion burst

    May 6, 2025

    ‘Titanic: The Digital Resurrection’ documentary sheds light on night ship sank

    May 6, 2025
    popular posts

    The 12 Weirdest Reality Shows Ever

    Brain cancer immunotherapy in mice more effective with drug coating

    10,000-year-old burials from unknown hunter-gatherer group discovered in Brazil

    Spotted salamander eggs hatch more easily if nibbled by predators

    Women Talking review – New feminist cinema

    Craig Mazin Removes His Name From ‘Borderlands’ Adaptation

    What ancient dung reveals about Epipaleolithic animal tending: Research suggests

    Categories
    • Books (3,212)
    • Cover Story (2)
    • Events (18)
    • Fashion (2,381)
    • Interviews (41)
    • Movies (2,511)
    • Music (2,789)
    • News (153)
    • Science (4,362)
    • Technology (2,505)
    • Television (3,234)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT