Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»Cyclic RNA switches that regulate gene expression in a cell
    Science

    Cyclic RNA switches that regulate gene expression in a cell

    By AdminMarch 7, 2023
    Facebook Twitter Pinterest LinkedIn Tumblr Email
    Cyclic RNA switches that regulate gene expression in a cell

    Schematic illustrations of circRNA switches and circuits. (A) Design of miRNA or protein-responsive circRNA switch. miRNA-responsive circRNA has the antisense of target miRNA sequence at the UTR. Protein-responsive circRNA has a protein-binding motif in IRES region. In both systems, gene expression from circRNA is repressed if the target miRNA or protein is present. (B) Scheme of circRNA circuit composed of miRNA- and protein-responsive circRNA switches. The first output (MS2CP or U1A protein) is encoded on a miRNA-responsive circRNA switch, and the second output (reporter protein) is encoded on a protein-responsive circRNA switch. In the OFF state (absence of input miRNAs), MS2CP or U1A protein represses translation of the second output gene-coding circRNA. In ON state (presence of input miRNAs), the MS2CP or U1A translation is repressed by the miRNAs, which leads to output translation. Credit: Nucleic Acids Research (2023). DOI: 10.1093/nar/gkac1252

    The Hirohide Saito Laboratory has developed cyclic RNA switches that can control gene expression in a cell type-specific manner using miRNAs and RNA-binding proteins and has successfully constructed an artificial gene circuit by combining them.

    Gene transfer technology using synthetic mRNA has the advantages of low risk of genome damage and high transfer efficiency compared to DNA, and thus has a wide range of potential applications, including vaccines, gene therapy, and genome editing. However, RNA is unstable in the cell, making it difficult to sustain gene expression, which is an application challenge.

    Because they are not easily degraded in the cells, cyclic RNAs are more stable than linear mRNAs and therefore attracting attention as a new synthetic mRNA that improves RNA persistence. However, specific introduction of mRNA into target cells has been difficult, and unintended protein expression in non-target cells may lead to reduced therapeutic efficacy and side effects in medical applications of mRNA. Therefore, it is necessary to develop a technology to control protein expression (gene expression) from cyclic RNA, but this has not been realized yet.

    The Saito laboratory started to work on the development of an RNA switch technology that can control gene expression of cyclic RNAs according to cell type.

    It is known that miRNAs induce mRNA degradation and suppress protein synthesis by binding to mRNAs with perfectly complementary RNA sequences in cells. The research group synthesized cyclic RNAs that are intended to respond to endogenous miRNAs to regulate gene expression. When the synthesized miRNA-responsive cyclic RNAs were introduced into cultured cells with a miRNA inhibitor, gene expression was confirmed, but gene expression was suppressed without miRNA inhibitors. This result suggests that the endogenous miRNAs bind to the engineered cyclic RNAs and suppressed its gene expression.

    In the same way, they attempted to synthesize cyclic RNAs in which protein-binding motifs were inserted into the internal ribosome entry site (IRES), which enables translation without 5′ cap structure, and gene expression was consequently regulated by the RNA-binding proteins. As a result, they succeeded in constructing the cyclic RNA that can regulate gene expression in an RNA-binding protein-dependent manner without compromising IRES function.

    Finally, they developed an artificial gene circuit by combining the two types of cyclic RNA switches and verified whether it functions in the cells. As a result, the researchers showed that specific miRNAs can induce gene expression from cyclic RNAs. The group also confirmed that the gene expression was sustained for a longer period of time compared to the artificial gene circuit composed of normal-type linear mRNAs.

    It is expected that the newly developed technologies for cyclic RNA switches and artificial gene circuits will expand the range of applications of mRNA medicine and contribute to solving problems for practical use.

    The results of this research were published online in Nucleic Acids Research on January 16, 2023.

    More information: Shigetoshi Kameda et al, Synthetic circular RNA switches and circuits that control protein expression in mammalian cells, Nucleic Acids Research (2023). DOI: 10.1093/nar/gkac1252

    Provided by Kyoto University

    Citation: Cyclic RNA switches that regulate gene expression in a cell type-specific manner (2023, February 16) retrieved 7 March 2023 from https://phys.org/news/2023-02-cyclic-rna-gene-cell-type-specific.html

    This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

    Read The Full Article Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Research reveals missed opportunities to save George Floyd’s life

    May 25, 2025

    Pelican eel: The midnight zone ‘gulper’ with a giant mouth to swallow animals bigger than itself

    May 24, 2025

    Are microplastics in ultra-processed food harming your mental health?

    May 23, 2025

    Eldest daughters often carry the heaviest burdens: Insights from Madagascar

    May 21, 2025

    What’s hiding under Antarctica’s ice?

    May 12, 2025

    Failed Soviet probe will soon crash to Earth – and we don’t know where

    May 9, 2025
    popular posts

    First Out: New Music From Lil Nas X, Muna, Dove

    Bride: Recap, Summary & Spoilers

    BSNL Rs. 228, Rs. 239 Prepaid Monthly Recharge Plans Launched:

    Author Relives Brother’s Childhood Memories in Iran

    “One More” by Better Fires

    Slack Thinks You Need Another Video Conferencing App

    AI-Generated Art Sounds Alarming, But It Doesn’t Have to Be

    Categories
    • Books (3,217)
    • Cover Story (2)
    • Events (18)
    • Fashion (2,386)
    • Interviews (43)
    • Movies (2,516)
    • Music (2,794)
    • News (153)
    • Science (4,367)
    • Technology (2,510)
    • Television (3,239)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT