Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»Catalyst can control methane emissions in natural gas engines
    Science

    Catalyst can control methane emissions in natural gas engines

    By AdminAugust 15, 2023
    Facebook Twitter Pinterest LinkedIn Tumblr Email
    Catalyst can control methane emissions in natural gas engines

    A catalyst using a single or just a few palladium atoms removed 90% of unburned methane from natural gas engine exhaust at low temperatures in a recent study. While more research needs to be done, the advance in single atom catalysis has the potential to lower exhaust emissions of methane, one of the worst greenhouse gases that traps heat at about 25 times the rate of carbon dioxide.

    Reporting in the journal, Nature Catalysis, a research effort between Washington State University and SLAC National Accelerator Laboratory showed that the single-atom catalyst was able to remove methane from engine exhaust at lower temperatures, less than 350 degrees Celsius (662 degrees Fahrenheit), while maintaining reaction stability at higher temperatures.

    “It’s almost a self-modulating process which miraculously overcomes the challenges that people have been fighting — low temperature inactivity and high temperature instability,” said Yong Wang, Regents Professor in WSU’s Gene and Linda Voiland School of Chemical Engineering and Bioengineering and a corresponding author on the paper.

    Natural gas engines are used in about 30 million to 40 million vehicles worldwide and are popular in Europe and Asia. The gas industry also uses them to run compressors that pump natural gas to people’s homes. They are generally considered cleaner than gasoline or diesel engines, creating less carbon and particulate pollution.

    However, when these natural gas-powered engines start up, they emit unburnt, heat-trapping methane because their catalytic converters don’t work well at low temperatures. The catalysts for methane removal are either inefficient at lower exhaust temperatures or they severely degrade at higher temperatures.

    “There’s a big drive towards using natural gas, but when you use it for combustion engines, there will always be unburnt natural gas from the exhaust, and you have to find a way to remove that. If not, you cause more severe global warming,” said co-author Frank Abild-Pedersen, a staff scientist at SLAC National Accelerator Laboratory. “If you can remove 90% of the methane from the exhaust and keep the reaction stable, that’s tremendous.”

    A single-atom catalyst with the active metals singly dispersed on a support also uses every atom of the expensive and precious metals, Wang added.

    advertisement

    “If you can make them more reactive, that’s the icing on the cake,” he said.

    In their work, the researchers were able to show that their catalyst made from single palladium atoms on a cerium oxide support efficiently removed methane from engine exhaust, even when the engine was just starting.

    They found that trace amounts of carbon monoxide that are always present in engine exhaust played a key role in dynamically forming active sites for the reaction at room temperature. The carbon monoxide helped the single atoms of palladium migrate to form two- or three-atom clusters that efficiently break apart the methane molecules at low temperatures.

    Then, as the exhaust temperatures rose, the sub-nanometer-sized clusters re-dispersed to single atoms again so that the catalyst was thermally stable. This reversible process enables the catalyst to work effectively and uses every palladium atom the entire time the engine was running — including when it started cold.

    “We were really able to find a way to keep the supported palladium catalyst stable and highly active and because of the diverse expertise across the team, to understand why this was occurring,” said Christopher Tassone, a staff scientist at SLAC National Accelerator Laboratory and co-author on the paper.

    The researchers are working to further advance the catalyst technology. They would like to better understand why palladium behaves in one way while other precious metals such as platinum act differently.

    The research has a way to go before it will be put inside a car, but the researchers are collaborating with industry partners as well as with Pacific Northwest National Laboratory to someday move the work closer to commercialization.

    In addition to Wang, Abild-Pedersen, and Tassone, Dong Jiang, senior research associate in the Voiland School, also led the work. The work was funded by the U.S. Department of Energy’s Office of Basic Energy Sciences.

    Read The Full Article Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Your chance of having a boy or girl may not be 50/50

    July 19, 2025

    Crustal faulting generates key energy sources, study shows

    July 19, 2025

    Tuvalu residents prepare for world’s first planned migration of an entire nation — and climate change is to blame

    July 18, 2025

    AI demand could drive up US electricity bills – even if it fizzles

    July 18, 2025

    International study shows impact of social media on young people

    July 17, 2025

    Best spotting scopes in 2025 for birdspotting and wildlife watching

    July 17, 2025
    popular posts

    “Inner Path” by Guillermo Marigliano

    Avril Lavigne Spotted Kissing Tyga Following Mod Sun Split: See

    Return to the ’90s again with all the music from

    Grey’s Anatomy Season 20 Episode 3 Review: Walk on the

    Alien life on Venus? No chance, says new NASA study

    Tell Us What Kind Of Reader You Are And Get

    Primus + Ween Join Matt Stone + Trey Parker to

    Categories
    • Books (3,297)
    • Cover Story (5)
    • Events (19)
    • Fashion (2,457)
    • Interviews (43)
    • Movies (2,596)
    • Music (2,875)
    • News (155)
    • Politics (2)
    • Science (4,446)
    • Technology (2,589)
    • Television (3,319)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT