Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»Astronomers discover new feature in exoplanet distribution that’s between the Neptunian Desert and Savanna
    Science

    Astronomers discover new feature in exoplanet distribution that’s between the Neptunian Desert and Savanna

    By AdminSeptember 17, 2024
    Facebook Twitter Pinterest LinkedIn Tumblr Email
    Astronomers discover new feature in exoplanet distribution that’s between the Neptunian Desert and Savanna


    Neptune
    Voyager 2 took this picture of Neptune in 1989. Credit: NASA

    Astronomers have uncovered the “Neptunian Ridge,” a newly identified feature in the distribution of exoplanets. This discovery, led by an international team including members of the University of Geneva, The NCCR PlanetS and the Centro de Astrobiología (CAB), highlights the complex dynamics within the Neptunian Desert, a region with a scarcity of hot Neptunes, and the Neptunian Savanna, where these planets are more commonly found.

    By understanding these critical zones, researchers gain valuable insights into the dynamic processes that influence the formation and evolution of close-in exoplanets. The discovery of the Neptunian Ridge is published in the journal Astronomy & Astrophysics.

    To visualize the vast extent of exoplanetary systems, researchers often plot the distribution of planets as a function of their radius and orbital period. It reveals patterns and regions of exoplanets with similar properties that astronomers try to understand.

    One of the most puzzling regions is the “Neptunian Desert”, where Neptune-sized planets are surprisingly scarce. This dearth of Neptunes in the distribution of planets orbiting close to their host stars is thought to result from intense stellar radiation stripping away the atmospheres of planets, eroding them and turning them into smaller planets.

    Beyond this harsh desert lies the “Neptunian Savanna”, a less severe zone where Neptune-sized planets are more commonly found. In this region, the conditions allow these planets to maintain their gaseous envelopes, resulting in an area that is more populated with Neptunes that have migrated to orbits where they can survive the star’s radiation. Understanding how the Neptunian Desert and Savanna are shaped has become a key question in exoplanet research.

    Introducing the Neptunian Ridge

    The new study focuses on the transition between the Neptunian Desert and the Savanna. The astronomers found an unexpected concentration of Neptune-sized planets at the edge of the Neptunian Desert—a feature now termed the “Neptunian Ridge”.

    “We found an overdensity of planets in this region, indicating a sharp transition between the barren Neptunian Desert and the more populated Neptunian Savanna,” explains Dr. Vincent Bourrier, Assistant Professor at the Astronomy Department of the UNIGE Faculty of Science and co-author of the study. This newly identified ridge marks a critical zone where planets have managed to migrate inward while resisting the intense radiation near their stars.

    Uncovering the ridge: Methods and tools

    The discovery was made possible by analyzing data from NASA’s Kepler mission, corrected for observational biases using advanced statistical techniques. The researchers meticulously mapped the period-radius space of these exoplanets, revealing distinct regions that define the Neptunian landscape.

    The team’s analysis identified the Neptunian Ridge at orbital periods between 3.2 and 5.7 days, nestled between the Neptunian Desert and the Neptunian Savanna. This comprehensive mapping highlights the intricate processes involved in the migration and survival of these planets in close proximity to their stars.

    Implications for planet formation and evolution

    “The Neptunian Ridge stands tall above the Desert and Savanna. It provides us with a key to understanding the physical mechanisms shaping the Desert,” says Vincent Bourrier. Most Neptunes may be distributed over the Savanna and Desert early in their life by migrating within the disk in which they formed.

    The existence of the Ridge suggests that some Neptune-size planets are brought to this region by a type of migration called high-eccentricity migration, which occurs later in their life and allow them to survive erosion from the stars.

    These migration processes, coupled with photoevaporation, likely shape the distinct features observed in the Neptunian landscape. The similarities between the Neptunian Ridge and another feature in the exoplanet distribution, the hot Jupiter pileup, suggests that similar evolutionary processes may influence both groups of planets.

    An ambitious observation program

    To further unravel the mysteries of the Neptunian Desert and Savanna, a team of researchers led by UNIGE has secured a large-scale observational program using the high resolution spectrograph ESPRESSO mounted on the Very Large Telescope of ESO.

    This program aims to conduct a comprehensive census of the orientation of planets’ orbits within a sample of close-in Neptunes. This orientation depends on the migration process and will thus provide critical data on the formation and evolution of these planets, providing essential clues for understanding the particularities of the Neptune distribution.

    “The Neptunian Ridge is just the beginning,” concludes Amadeo Castro-González, Ph.D. student at the Center for Astrobiology in Madrid, and first author of the study. “With upcoming results from this observational program, we’ll be able to test our hypotheses about the origins and evolution of these intriguing worlds, providing a more comprehensive view of the close-in Neptunian landscape.”

    More information:
    A. Castro-González et al, Mapping the exo-Neptunian landscape: A ridge between the desert and savanna, Astronomy & Astrophysics (2024). DOI: 10.1051/0004-6361/202450957

    Provided by
    University of Geneva


    Citation:
    Astronomers discover new feature in exoplanet distribution that’s between the Neptunian Desert and Savanna (2024, September 17)
    retrieved 17 September 2024
    from https://phys.org/news/2024-09-astronomers-feature-exoplanet-neptunian-savanna.html

    This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
    part may be reproduced without the written permission. The content is provided for information purposes only.

    View Original Source Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    A close look at recreational boating on German lakes

    July 14, 2025

    Could signs of Mars life be hidden in its thick layers of clay?

    July 14, 2025

    We may have finally solved an ultra-high-energy cosmic ray puzzle

    July 13, 2025

    New clues from two million-year-old tooth enamel tell us more about an ancient relative of humans

    July 13, 2025

    How is DNA used to identify victims of mass disasters?

    July 12, 2025

    How government use of AI could hurt democracy

    July 12, 2025
    popular posts

    James Cameron Has Plans For ‘Avatar 6’ and ‘7’

    Polarity proteins shape efficient ‘breathing’ pores in grasses

    Adam Driver on Finding New Forms of Creative Expression

    Hildur Guðnadóttir: ‘Music is a way to express yourself beyond

    The Crime is Mine review – Huppert steals the show

    Snapchat+ Members Get Custom Story Expiration, More Features Released

    Realme Narzo 80 Lite Launching Today: Price in India, Expected Features and Specifications

    Categories
    • Books (3,287)
    • Cover Story (4)
    • Events (18)
    • Fashion (2,449)
    • Interviews (43)
    • Movies (2,586)
    • Music (2,864)
    • News (155)
    • Politics (1)
    • Science (4,436)
    • Technology (2,579)
    • Television (3,309)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT