Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»An extremely lightweight fission rocket could reach the solar gravitational
    Science

    An extremely lightweight fission rocket could reach the solar gravitational

    By AdminMarch 13, 2023
    Facebook Twitter Pinterest LinkedIn Tumblr Email
    An extremely lightweight fission rocket could reach the solar gravitational

    Aerogel that will be used to stabilize the fission fuel in the new FFRE. Credit: NASA / Ryan Weed

    Novel propulsion ideas for moving around space seem like they’re a dime a dozen recently. Besides the typical argument between solar sails and chemical propulsion lies a potential third way—a nuclear rocket engine. While we’ve discussed them here at UT before, NASA’s Institute of Advanced Concepts has provided a grant to a company called Positron Dynamics for the development of a novel type of nuclear fission fragment rocket engine (FFRE). It could strike the balance between the horsepower of chemical engines and the longevity of solar sails.

    FFREs are not a new concept in themselves, but many have massive technical hurdles to overcome before they can be considered useful. Their advantages, such as high specific impulse and extremely high power density, are offset by their disadvantages, such as requiring a complicated form of plasma levitation.

    Positron Dynamics hopes to tip that balance by utilizing two separate breakthroughs derived from other areas of research. The first novel approach would be to put the fissile material in an ultralight aerogel. The second would be implementing a superconducting magnet to contain those fission particles.

    Here’s a high level overview of how are FFRE works, thanks to a professor from Finland. Credit: TVIW YouTube Channel

    FFREs essentially utilize the same nuclear process that powers energy-generating nuclear plants on Earth. However, instead of generating only electricity, they also generate thrust and a very high amount of thrust at that. However, it’s not practical to send a whole bar of uranium fuel, such as that used in fission reactors here on Earth, up into space.

    Embedding the fuel itself into one of the lightest known human substances solves that problem. Aerogels are extraordinarily airy materials that look ethereal when someone is holding them, as they are in the lead image above. Embedding fuel particles for the fission reaction in them would be a convenient way to hold the fuel together while still allowing the overall structure to be light enough to be lifted into orbit.

    However, the structure of the aerogels themselves wouldn’t do much to contain the fission fragments are they break apart. To do so would require a massive outside force, which is where the superconducting magnet comes in.

    UT video on the benefits of nuclear propulsion.

    Superconducting magnets are typically used in experimental fusion plants, where they are used to contain the plasma needed to heat the fusion fuel but which would otherwise destroy any normal material. Given all the interest in fusion research lately, high-power magnets have also been receiving extra research attention.

    Adding one to an FFRE would allow engineers to channel the fission fragments all in the same direction, effectively turning them into a thrust vector. It has the added advantage of not allowing the fragments to destroy any other parts of the engine as well.

    So far, this is all very theoretical, as there are still plenty of hurdles to overcome. But that is exactly what NIAC is for—fund early-stage projects and attempt to de-risk them. Maybe someday FFREs will be able to hit that sweet spot of speed and fuel efficiency that so many rocket scientists dream of.

    Provided by Universe Today

    Citation: An extremely lightweight fission rocket could reach the solar gravitational lens in 15 years (2023, February 16) retrieved 13 March 2023 from https://phys.org/news/2023-02-extremely-lightweight-fission-rocket-solar.html

    This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

    Read The Full Article Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    New IQ research shows why smarter people make better decisions

    June 26, 2025

    ‘God-king’ born from incest in ancient Ireland wasn’t a god or a king, new study finds

    June 26, 2025

    Generation Alpha’s coded language makes online bullying hard to detect

    June 25, 2025

    Pulsars could have tiny mountains

    June 25, 2025

    New ‘breathalyzer’ could detect signs of disease in human breath, scientists say

    June 24, 2025

    Mice with two fathers have their own offspring for the first time

    June 24, 2025
    popular posts

    NASA’s gargantuan Mega Moon Rocket could head to space as

    Tesla Expects to Miss 2022 Delivery Targets, Q3 Revenues Miss

    Avoiding food waste over the holidays to save money and

    What Are Mis-, Dis-, and Mal- Information?: Book Censorship News,

    Undetected brain infections may explain some SIDS cases

    Dredging Up the Truth: 5 Water-Logged Crime and Suspense Novels

    BookTrib’s Bites: Curl Up With These Cozy Reads

    Categories
    • Books (3,250)
    • Cover Story (2)
    • Events (18)
    • Fashion (2,419)
    • Interviews (43)
    • Movies (2,550)
    • Music (2,828)
    • News (154)
    • Science (4,400)
    • Technology (2,543)
    • Television (3,272)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT