Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»A new mutation behind synucleinopathies
    Science

    A new mutation behind synucleinopathies

    By AdminMay 29, 2022
    Facebook Twitter Pinterest LinkedIn Tumblr Email

    Parkinson’s disease and Lewy body dementia belong to a family of neurodegenerative disorders called synucleinopathies because they are caused by the pathological accumulation of protein alpha-synuclein into structures called Lewy bodies and Lewy neurites in the brain.

    In a healthy brain, alpha-synuclein is found in synapses as distinct proteins called monomers. But various mutations of the gene that encodes alpha-synuclein can cause the protein to clump together and form larger oligomers and even larger fibrils.

    Scientists have identified and mapped out a lot of mutations of the alpha-synuclein gene that lead to synucleinopathies, with many studies, including work from the Lashuel lab, showing the mutations may also act through distinct mechanisms, leading to the same pathology. Although rare, studying these mutations has led to important insights and helped unmask different mechanisms that contribute to neurodegeneration and the development of Parkinson’s disease.

    A novel mutation

    But in 2020, a study reported a new mutation of the alpha-synuclein gene in a patient with Lewy body dementia and an atypical degeneration of the frontal and temporal lobes. The mutation substitutes the amino acid glutamate (E) with a glutamine (Q) at the 83rd position of the protein’s amino acid sequence — which is why the mutation is called E83Q. What distinguishes this mutation from all previously identified mutations is that it lies in the middle of the domain that regulates alpha-synuclein normal functions (interaction with membranes) and drives aggregation and pathology formation initiation.

    Exploring a new path

    “I was intrigued by the unique position of this mutation and the fact that the E83Q mutation carrier showed severe Lewy body pathology in the cortical and hippocampal regions of the brain than the usual substantia nigra which tends to be majorly affected in Parkinson’s disease,” says Hilal Lashuel at EPFL’s School of Life Sciences.

    advertisement

    Lashuel adds: “These observations suggested that the new mutation may influence alpha-synuclein’s structure, aggregation, and pathogenicity through mechanisms distinct from those of other mutations and could help us uncover novel mechanisms linking alpha-synuclein to neurodegeneration and pathology formation in Parkinson’s disease.”

    The scientists collaborated with the groups of Markus Zweckstetter at DZNE in Germany and Frank Sobott at the University of Leeds. They applied a battery of biochemical, structural, and imaging approaches to dissect how this mutation modifies the structure of the different forms of alpha-synuclein and its aggregation properties in vitro. Next, they used a combination of cellular models of Lewy body formation to determine how the E83Q mutation influences various aspects of alpha-synuclein associated with its normal function and pathology.

    Their in vitro studies showed that this mutation not only increased dramatically the rate of alpha-synuclein aggregation but also formed aggregates with structural and morphological signatures that are distinct from those seen with the normal protein. “This was exciting since recent studies have shown that aggregates of different structures exhibit differences in their ability to induce pathology and spreading in mouse models of PD and could possibly explain the clinical heterogeneity of Parkinson’s disease and other neurodegenerative diseases,” says Senthil T. Kumar, one of the study’s first authors.

    To determine if these structural differences are sufficient to translate into differences in pathology formation and toxicity, the researchers compared the ability of E83Q and the normal alpha-synuclein protein to induce pathology formation in a neuronal model of Lew body formation and neurodegeneration that was developed in the Lashuel lab and is widely used to identify novel targets and test new alpha-synuclein targeting therapies.

    “In the neuronal seeding model of Lewy body formation, the E83Q mutation not only dramatically increased the seeding activity and the formation of Lewy body-like inclusions, but it also led to the formation of multiple aggregates with diverse morphological features — very similar to the diversity of alpha-synuclein pathology seen in the brains of patients with Parkinson’s disease,” says Anne-Laure Mahul-Mellier, the study’s other first author. “We were thrilled to see that we can achieve this in our Lewy-body in a dish model.”

    “Our findings support a central role of alpha-synuclein in the development of PD and other synucleinopathies and demonstrate that variations in the structural properties of alpha-synuclein aggregates could contribute to the neuropathological and clinical heterogeneity of synucleiniopathies,” says Lashuel. “Thus, emphasizing the critical importance of using disease models that reproduce to the extent possible the diversity of the human pathology and therapies capable of targeting the diversity of pathological alpha-synuclein species.”

    As a next step, Lashuel’s group will validate these findings in animal models using material isolated from the affected patient, and will further investigate whether this mutation also influences the normal functions of alpha-synuclein.

    Story Source:

    Materials provided by Ecole Polytechnique Fédérale de Lausanne. Original written by Nik Papageorgiou. Note: Content may be edited for style and length.

    Read The Full Article Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Research reveals missed opportunities to save George Floyd’s life

    May 25, 2025

    Pelican eel: The midnight zone ‘gulper’ with a giant mouth to swallow animals bigger than itself

    May 24, 2025

    Are microplastics in ultra-processed food harming your mental health?

    May 23, 2025

    Eldest daughters often carry the heaviest burdens: Insights from Madagascar

    May 21, 2025

    What’s hiding under Antarctica’s ice?

    May 12, 2025

    Failed Soviet probe will soon crash to Earth – and we don’t know where

    May 9, 2025
    popular posts

    I Tried the Viral JNCO Jeans From the ’90s Making a Comeback

    ‘Sonic the Hedgehog 3’ Reviewed By Two Kids

    5 Outside-the-Box Graphic Novels That Defy Expectations

    How to Use Focus Mode to Get Work Done in

    Potential Increase to Library Budget and What You Can Do

    The Trillion-Dollar Auction to Save the World

    A Second, Closer Look at Amor Towles’ “A Gentleman in

    Categories
    • Books (3,217)
    • Cover Story (2)
    • Events (18)
    • Fashion (2,386)
    • Interviews (43)
    • Movies (2,516)
    • Music (2,794)
    • News (153)
    • Science (4,367)
    • Technology (2,510)
    • Television (3,239)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT