Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»A mobile breakthrough for water environment monitoring: Novel colorimetric multi-channel
    Science

    A mobile breakthrough for water environment monitoring: Novel colorimetric multi-channel

    By AdminJanuary 31, 2023
    Facebook Twitter Pinterest LinkedIn Tumblr Email
    A mobile breakthrough for water environment monitoring: Novel colorimetric multi-channel

    Credit: Frontiers of Environmental Science & Engineering (2022). DOI: 10.1007/s11783-022-1590-z

    Reliable colorimetric analysis technologies have been widely praised for their highly sensitive and selective responses towards various contaminants in environmental monitoring. In principle, the chromogenic agent selectively reacts with the target in water samples, and the colored product reflects the specific absorbance spectrum.

    Obeying the Lambert-Beer law, the absorbance is proportional to the concentration of the absorbing species, providing the basis for the qualitative and quantitative detection of contaminants in water samples. The observation by eye has the advantage of low cost, but the accuracy is unsatisfactory. The conventional photoelectron detector, such as the spectrophotometer and a microplate reader, is expensive and thus difficult to be applied in resource-limited or remote environments.

    The application scenario of colorimetric analysis technologies has led to a keen interest in the balance of accuracy and cost. Considering both accuracy and cost, developing colorimetric analysis technologies on the commercial cellphone platform is gathering significant attention in environmental monitoring because of the low cost, high flexibility, easy to miniaturization, and widespread ownership of cellphone.

    Notably, the outstanding advantages of cellphone-based colorimetric technology is expected to greatly accelerate the environmental and health-related analysis capabilities in the remote or less-developed countries and regions. However, the majority of reported studies focused on single-channel colorimetric detection, which led to a limited detection efficiency, especially facing with complicated contaminants in water samples.

    Research on cellphone-based multi-channel sensing systems has gained growing interest because the systems have the potential to simultaneously detect multiple targets in a single measurement, and the involved techniques for the rapid assessment of water samples are fast, robust and inexpensive.

    To realize the multi-channel sensing capability, a mainstream technology pathway is to directly capture the colorimetric images from 96-well plates using a cellphone camera. In all cases, the majority of strategies to improve the sensing capability of the cellphone-based system were based on a monochromatic light source, lacking universality and flexibility towards different contaminants which showed different absorption peaks.

    In this work, the researchers from Harbin Institute of Technology Tsinghua University and Chongqing University proposed a cellphone-based colorimetric multichannel sensor for water environmental monitoring. A white LED array was used as the incident light to illuminate a 96-well plate. To improve the sensitivity of the sensor, a delicate optical path system was created by using a diffraction grating to split six white beams transmitting through the multiple colored samples.

    The transmitted light from six wells was collected by six optical fibers and imaged by a cellphone camera after passing through a diffraction grating, which allows the cellphone CMOS camera to capture the diffracted light for image analysis. The image was captured by a custom-designed cellphone app for analysis using a specific algorithm, yielding detection results which were displayed using the same app.

    This study entitled “A cellphone-based colorimetric multi-channel sensor for water environmental monitoring” is published in Frontiers of Environmental Science & Engineering.

    The compact sensor was successfully tested for simultaneous detection of various environmental contaminants with an absorption wavelength range of 400–700 nm, achieving high sensitivity, specificity and reliability. By introducing the diffraction grating for splitting light, the sensitivity was improved by over six folds compared with a system that directly photographed transmitted light.

    As a successful proof-of-concept, the sensor was used to detect turbidity, orthophosphate, ammonia nitrogen and three heavy metals simultaneously with high sensitivity. Moreover, high stability (RSD of 0.37%–1.60%) and excellent recoveries (95.5%–106.0%) demonstrated that the sensor can conduct accurate detection in real water matrices.

    Owing to the advantages of remarkable detection performance, low cost, easy operation, good portability, and multi-index measurement, the miniature sensor demonstrated in-field sensing ability in environmental monitoring, which can be extended to point-of-care diagnosis, food safety control and risk early warning, etc.

    Notably, by introducing the biorecognition materials, such as enzyme, antibody and functional nucleic acid, the sensor has the potential to be smarter to realize the detection of trace organic matters. Further, it can be expected that this technology would allow the detection channels up to 96 on the premise of overcoming the limitation of the volume or numbers of the diffraction grating.

    More information: Yunpeng Xing et al, A cellphone-based colorimetric multi-channel sensor for water environmental monitoring, Frontiers of Environmental Science & Engineering (2022). DOI: 10.1007/s11783-022-1590-z

    Provided by Higher Education Press

    Citation: A mobile breakthrough for water environment monitoring: Novel colorimetric multi-channel sensor using a cell phone (2023, January 17) retrieved 30 January 2023 from https://phys.org/news/2023-01-mobile-breakthrough-environment-colorimetric-multi-channel.html

    This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

    Read The Full Article Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    What do you do if your dog ingests cocaine?

    August 18, 2025

    FDA panel has cast doubt on whether antidepressants are safe in pregnancy. Here’s what the science actually says.

    August 17, 2025

    It is impossible to build a practical quantum broadcaster

    August 17, 2025

    Bogong moths migrate up to 1,000 km using celestial navigation and the Earth’s magnetic field

    August 16, 2025

    Science news this week: Black holes galore and blue whales that still sing

    August 16, 2025

    Weird microbial partnership shows how complex life may have evolved

    August 15, 2025
    popular posts

    Get a Grip on Your Grind with the Best Gym

    The National debut three new songs in Spain: Watch

    I Tried On Over 100 Pieces This Year—These 11 Joined My Capsule Wardrobe

    Spotify Expanding Audiobooks Plans in Most Confusing Way Possible

    How to Find First Edition Books: Your Starting Guide

    Days of Our Lives Spoilers for the Week of 9-23-24 Suggest Fiona Could Be The Next One Caught!

    ‘Quantumania’ Writer Was ‘Really Sad’ About Movie’s Reviews

    Categories
    • Books (3,355)
    • Cover Story (5)
    • Events (19)
    • Fashion (2,494)
    • Interviews (43)
    • Movies (2,655)
    • Music (2,935)
    • News (156)
    • Politics (3)
    • Science (4,505)
    • Technology (2,650)
    • Television (3,380)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT