Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»A meteorite 100 times bigger than the dinosaur-killing space rock may have nourished early microbial life
    Science

    A meteorite 100 times bigger than the dinosaur-killing space rock may have nourished early microbial life

    By AdminNovember 2, 2024
    Facebook Twitter Pinterest LinkedIn Tumblr Email
    A meteorite 100 times bigger than the dinosaur-killing space rock may have nourished early microbial life


    The devastation of a giant meteorite impact on early Earth may have allowed life to flourish, new research suggests.

    A study of the remnants of a 3.26 billion-year-old impact reveals that microbial life — the only type of life at that time — may have ultimately benefited from the impact of a meteorite 50 to 200 times larger than the one that killed off the nonavian dinosaurs. While destruction reigned immediately after the impact, the meteorite and a resulting tsunami ultimately released nutrients that were crucial to microbes, the researchers reported.

    “Not only do we find that life has resilience, because we still find evidence for life after the impact; we actually think there were changes in the environment that were really great for life,” said Nadja Drabon, an assistant professor of Earth and planetary sciences at Harvard University and the lead author of the study, published Oct. 21 in the journal PNAS.

    Drabon and her colleagues investigated evidence of an impact during the Archean eon (4 billion to 2.5 billion years ago) in what is now South Africa. Back then, this region was a shallow sea environment. There are probably only a few places on Earth where rocks this old preserve a moment in such detail, Drabon told Live Science.

    In the layers, researchers can see spherules — tiny, glass-like orbs that form when a meteorite impact melts silica-containing rock. They also see conglomerates, or rocks made of other chunks of rock. The conglomerates are evidence of a globe-spanning tsunami that tore up the seafloor and smooshed the debris into clumps. The chemistry of the rock layers reveals remnants of the meteor itself, which was a primitive type of space rock called a carbonaceous chondrite. It would have measured between 23 and 36 miles (37 to 58 kilometers) in diameter.

    Even though the South Africa site was a good distance from the impact, the collision had major consequences. Not only did it cause a worldwide tsunami, but it also threw up dust that would have blotted out the sun. Evaporated minerals show that the impact also heated the atmosphere enough to boil the upper layers of the ocean.

    “It would have been quite disastrous for any life on land or in shallow water,” Drabon said.

    Get the world’s most fascinating discoveries delivered straight to your inbox.

    Deposits on this rock reflect a tsunami caused by a meteorite impact 3.26 billion years ago. (Image credit: Nadja Drabon)

    Within a few years or decades of the impact, however, life was returning, and it may have been in better shape than ever. That’s because, post-impact, there were spikes in elements essential to life, the study authors noted in the study.

    The first was phosphorus, an essential mineral that likely would have been in short supply in the oceans 3.26 billion years ago. Today, phosphorus erodes out of continental rocks into the oceans, but during the Archean, Earth was mostly a water world, with a limited number of volcanic islands and small continents. A carbonaceous chondrite of the impactor’s size would have held hundreds of gigatons of phosphorus, Drabon said.

    The second was iron, which would have been plentiful in the deep Archean oceans but not in the shallow seas. The tsunami caused by the meteorite strike would have mixed the oceans, bringing this metal into shallower regions, Drabon said. Red rocks in the layers above the impact show this change in the environment.

    The study helps to explain how life began to flourish on a young planet beset by space collisions. The geological record suggests that meteorites larger than the one that killed the dinosaurs hit the early Earth at least every 15 million years. Life was resilient, Drabon said, but those impacts may have shaped life’s evolution each time they occurred.

    “Because of the extinction of the dinosaurs, mammals were able to radiate, and without that, who knows if we would be able to be here?” Drabon said. The Archean impacts may have had similarly decisive effects on the kinds of microbes that flourished and the kinds that faded away.

    “Every impact is going to have some negative effects and some positive effects,” Drabon said.

    View Original Source Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Melting glaciers could trigger volcanic eruptions around the globe, study finds

    July 8, 2025

    Vapour-sniffing drug detector tested at the US-Mexico border

    July 7, 2025

    Dark dwarfs lurking at the center of our galaxy might hint at the nature of dark matter

    July 7, 2025

    What did ancient Rome smell like? BO, rotting corpses and raw sewage for starters …

    July 6, 2025

    Fig trees may benefit climate by turning carbon dioxide into stone

    July 6, 2025

    Why is there no life on Mars? Rover finds a clue

    July 5, 2025
    popular posts

    George Michael Tops Fan Vote for 2023 Rock and Roll

    Christopher Walken Destroyed Original Banksy Art for The Outlaws

    Ghosts Season 2: Where to Watch & Stream Online

    Gotham Knights Upcoming Patches Will Fix Performance Issues on PC,

    Station 19 Season 6 Episode 16 Review: Dirty Laundry

    Here are the 2025 Andrew Carnegie Medals Longlisted Books

    Movies, Now More than Ever: Robert Altman’s The Player at

    Categories
    • Books (3,274)
    • Cover Story (4)
    • Events (18)
    • Fashion (2,439)
    • Interviews (43)
    • Movies (2,573)
    • Music (2,851)
    • News (155)
    • Politics (1)
    • Science (4,423)
    • Technology (2,566)
    • Television (3,296)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT