Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»7 rules that explain Earth’s most extreme animal shapes and
    Science

    7 rules that explain Earth’s most extreme animal shapes and

    By AdminAugust 20, 2023
    Facebook Twitter Pinterest LinkedIn Tumblr Email
    7 rules that explain Earth’s most extreme animal shapes and

    Animals come in extreme shapes and sizes, from enormous elephants and colossal squids to miniature marmoset monkeys and teeny-weeny frogs. But there is some method to nature’s madness, and while evolution can be unpredictable, there are a few established rules that govern how animals take these extreme shapes.

    Below are seven rules that scientists have established to describe evolutionary trends. Keep in mind that these are general trends, and not every species is covered. Even nature’s rules are made to be broken.

    Bergmann’s rule

    A polar bear walking through the Arctic National Wildlife Refuge in Alaska.  (Image credit: Patrick J. Endres via Getty Images)

    Bergmann’s rule states that animals evolve to be larger in colder climates. This trend occurs because larger animals have a smaller surface area-to-volume ratio, which helps to reduce heat loss. Thus bigger bodies are better at retaining heat compared to smaller bodies.

    A polar bear (Ursus maritimus) in the Arctic, for example, is more than two and a half times taller than a sun bear (Helarctos malayanus) living in the tropics of South East Asia, according to The University of Texas at Austin. The rule is named after the German biologist Carl Bergmann, according to Oxford Reference.

    Related: The animal kingdom is full of cheats, and it could be a driving force in evolution

    Allen’s rule

    A black-tailed jackrabbit in Arizona (Image credit: Wirestock via Getty Images)

    Allen’s rule states that animals in colder climates tend to have comparatively smaller appendages, such as limbs, ears and tails, than their relatives in warmer temperatures. Similar to Bergmann’s observation, this rule is all about retaining heat.

    Extremities typically have more surface area than volume; thus, larger appendages lose heat faster than smaller ones. For example, Arctic hares (Lepus arcticus) have shorter legs and smaller ears than American desert hares, such as black-tailed jackrabbits (L. californicus) and antelope jackrabbits (L. alleni). Allen’s rule is named after American zoologist Joel Allen, according to Memorial University of Newfoundland in Canada.

    Square-cube law

    An Asian elephant meanders down the road Khao in Yai National Park, Thailand. (Image credit: Chuchart duangdaw via Getty Images )

    The square-cube law is based on the mathematical principle that the ratio of two volumes is greater than the ratio of their surfaces. This principle means that as animals grow larger, their volume increases faster than their surface area, with larger animals eventually gaining more mass than their limbs can support.

    The square-cube law imposes a theoretical limit on how big animals can get, Live Science previously reported. Scientists believe the weight limit is around 120 tons (109 metric tons) for land animals.

    Island rule

    A Komodo dragon walks along a beach on Komodo island in Indonesia. (Image credit: Guenterguni via Getty Images)

    The island rule, also called the island effect or Foster’s rule, holds that small animals on islands tend to evolve into giant versions of their mainland relatives, and large animals tend to evolve into dwarf versions of their mainland relatives.

    Under the island rule, animals on the extreme ends of the size spectrum move toward an intermediate size that suits the island’s resources and predators, or lack thereof. A 2021 study published in the journal Nature Ecology & Evolution found that the island rule is widespread in mammals, birds and reptiles, with examples including giant lizards and extinct dwarf elephants.

    Related: This colossal extinct whale was the heaviest animal to ever live

    Island birds evolve toward flightlessness

    A Kiwi in New Zealand (Image credit: Miropa via Getty Images)

    A 2016 study published in the journal PNAS found that island birds evolve toward a flightless form. From the extinct Mauritius dodos (Raphus cucullatus) to living New Zealand kiwis, flightlessness is a long-established phenomenon on islands. However, most island birds still retain their ability to fly. What the 2016 study established is that even flying birds evolve smaller flight muscles and longer legs on islands, meaning that all island birds evolve at least some way toward flightlessness. These traits are more prominent on islands with few predators, implying that reduced predation pressure encourages birds to give up flight.

    Deep-sea gigantism

    A colossal squid caught on a New Zealand long-line fishing boat in the Ross Sea near Antarctica. (Image credit: Handout via Getty Images)

    There’s a tendency for invertebrate animals to evolve into giants at great ocean depths. Think colossal squid (Mesonychoteuthis hamiltoni) or giant crabs. Larger animals can move farther to find food and mate, which may help explain why there are so many giants in the deep sea where resources are scarce, Live Science previously reported. Larger animals also have more efficient metabolisms and a greater capacity to store energy from food. Finally, the deep ocean is cold, so deep-sea gigantism correlates with Bergmann’s rule of colder climates producing larger animals.

    Rensch’s rule

    Two mountain gorillas mate in Rwanda. (Image credit: SeppFriedhuber via Getty Images)

    Rensch’s rule describes a trend in sexual dimorphism, where one sex is larger than the other. The rule states that there’s a pattern within animal lineages of sexual dimorphism decreasing with size when females are larger than males and increasing with size when males are larger than females.

    A 2004 study published in the journal PNAS found that in larger species of shorebird, males are typically larger than females, and sexual dimorphism increases the bigger the males of a species get. In contrast, females are typically larger than males in smaller shorebirds.

    Read The Full Article Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    After 170 years, Thoreau’s river observations inform our changing climate

    May 8, 2025

    World’s first silicon-based quantum computer is small enough to plug into a regular power socket

    May 7, 2025

    Nothing is stronger than quantum connections – and now we know why

    May 7, 2025

    Astronomers observe the cooling process of a young stellar object following an accretion burst

    May 6, 2025

    ‘Titanic: The Digital Resurrection’ documentary sheds light on night ship sank

    May 6, 2025

    Ireland’s iconic megalithic tombs may have had an unexpected function

    May 5, 2025
    popular posts

    Neutrons expose crystal structure of elusive carbonic acid for the

    Sources: Black Forest Labs, whose Flux.1 model powers Grok's image generator, is raising $100M at a $1B valuation; Black Forest raised a $31M seed (Ingrid Lunden/TechCrunch)

    Recent advances in nickel-based catalysts for electrochemical reduction of carbon

    Where the Crawdads Sing review – Heavy-handed, mawkish literary snooze

    Largest Marsquake Ever Recorded May Be InSight’s Swan Song

    The World’s First Crispr Drug Gets a Slow Start

    Natalie Portman Is Open to a ‘Star Wars’ Return

    Categories
    • Books (3,211)
    • Cover Story (2)
    • Events (18)
    • Fashion (2,380)
    • Interviews (41)
    • Movies (2,510)
    • Music (2,788)
    • News (153)
    • Science (4,361)
    • Technology (2,502)
    • Television (3,233)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT