Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»3D pattern generation via chemical vapor deposition of ceramic eutectic
    Science

    3D pattern generation via chemical vapor deposition of ceramic eutectic

    By AdminJuly 9, 2023
    Facebook Twitter Pinterest LinkedIn Tumblr Email
    3D pattern generation via chemical vapor deposition of ceramic eutectic

    YNU researchers have developed a chemical vapor deposition technique for synthesizing ordered structures of ceramic eutectic systems. potential applications include radiation imaging and solid-state lighting. Credit: Yokohama National University

    The eutectic structure of metals and ceramics occurs when multiple solid phases solidify from a liquid phase, forming a three-dimensional (3D) pattern through a self-organizing phenomenon. Traditionally, it was believed that eutectic structures could only be obtained through a melt-solidification process.

    Researchers at Yokohama National University (YNU) have developed a chemical vapor deposition (CVD) process that allows precursor gases to react and generate solid-state composites with ordered structures in a YAG (yttrium alumina garnet)-alumina ceramic eutectic system.

    In their study, they observed the growth of spatially ordered rod- and lamellar-shaped YAG crystals within an alumina matrix on a sapphire wafer under Al-rich conditions. Conversely, under Y-rich conditions, they observed the growth of ordered alumina crystals with a YAG matrix. The choice of sapphire seed crystal and the composition of the precursor determined the 3D patterns. Compared with the melt-solidification process, the CVD process expanded the range of chemical compositions that could generate such patterns.

    The YAG–alumina chemically deposited eutectics can be doped with additional rare-earth elements, serving as luminescent centers. For example, cerium ions emit yellow light when irradiated with blue LEDs, producing white light for solid-state lighting. Europium ions emit red light for X-ray radiography when exposed to X-rays passing through a semiconductor device. “Our experiments demonstrate potential applications of YAG-alumina chemically deposited eutectics as environmental-resistant LED lighting and high-resolution X-ray imaging,” says Yuri Mitsuhashi, lead author of the study, conducted the experiments while being a graduate student at YNU.

    Photograph of europium- and cerium-doped YAG–alumina chemically deposited eutectics under UV light irradiation. Credit: Yokohama National University

    Alumina has long been recognized as a robust refractory ceramic material and is commonly used for structural and optical components. Aluminates, including rare-earth aluminum garnets and perovskites, have been extensively studied as functional ceramic materials, such as lasers, phosphors, and energy materials.

    “Among the aluminates, rare-earth aluminum garnets and perovskites have attractive properties and fortunately have eutectic systems with alumina,” says Shogen Matsumoto, who built a lab-made X-ray imaging system during his Ph.D. at YNU. He said, “We can synthesize a novel crystal that combines the advantages of alumina and aluminate.”

    This finding highlights that the generation of 3D patterns in ceramic eutectic composites can occur not only through the melt-solidification process but also through the vapor deposition process. “CVD is ready to make ceramic eutectic composites as functional or protective layers over substrate materials,” says Akihiko Ito, an associate professor at YNU and the principal investigator.

    “By contrast, the melt-solidification process, which requires pouring a high-temperature melt exceeding 2,000 degrees Celsius to form ceramic composite coatings on substrates, is impractical. Further research will focus on elucidating the mechanism behind chemically deposited eutectics,” said Ito.

    The findings are published in the Journal of the American Ceramic Society.

    More information: Yuri Mitsuhashi et al, Chemical vapor deposition of ordered structures in YAG–alumina eutectic system, Journal of the American Ceramic Society (2023). DOI: 10.1111/jace.19176

    Provided by Yokohama National University

    Citation: 3D pattern generation via chemical vapor deposition of ceramic eutectic system for novel solid-state phosphors (2023, June 26) retrieved 9 July 2023 from https://phys.org/news/2023-06-3d-pattern-generation-chemical-vapor.html

    This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

    Read The Full Article Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Orcas filmed making out in the wild for first time

    June 27, 2025

    Mystery fireball spotted plummeting to Earth over the US

    June 27, 2025

    New IQ research shows why smarter people make better decisions

    June 26, 2025

    ‘God-king’ born from incest in ancient Ireland wasn’t a god or a king, new study finds

    June 26, 2025

    Generation Alpha’s coded language makes online bullying hard to detect

    June 25, 2025

    Pulsars could have tiny mountains

    June 25, 2025
    popular posts

    Watch The Real Housewives of Beverly Hills Online: Season 13

    50 Years of Manipuri Cinema at the 53rd International Film

    Fossil thought to be earliest bryozoan animal may actually be

    More than a Quarter of a Billion People Went Hungry

    The High-Stakes Race to Engineer New Psychedelic Drugs

    2023 PEN/Faulkner Award Winner Announced

    Oppo Find X5, Find X5 Pro, Find X5 Lite Smartphones

    Categories
    • Books (3,252)
    • Cover Story (2)
    • Events (18)
    • Fashion (2,421)
    • Interviews (43)
    • Movies (2,552)
    • Music (2,830)
    • News (154)
    • Science (4,402)
    • Technology (2,545)
    • Television (3,274)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT