Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»Evidence for Stephen Hawking’s unproven black hole theory may have just been found — at the bottom of the sea
    Science

    Evidence for Stephen Hawking’s unproven black hole theory may have just been found — at the bottom of the sea

    By AdminMarch 12, 2025
    Facebook Twitter Pinterest LinkedIn Tumblr Email
    Evidence for Stephen Hawking’s unproven black hole theory may have just been found — at the bottom of the sea



    Five decades ago, famed astrophysicist Stephen Hawking theorized that the Big Bang may have flooded the universe with tiny black holes. Now, researchers believe they may have seen one explode.

    In Feb. 2025, the European collaboration KM3NeT — which consists of underwater detectors off the coasts of France, Italy and Greece — announced the discovery of a stupendously powerful neutrino. This ghostly particle had an energy of around 100 PeV — over 25 times more energetic than the particles accelerated in the Large Hadron Collider, the world’s most powerful atom smasher.

    Physicists have struggled to come up with an explanation for such an energetic neutrino. But now, a team of researchers who were not involved in the original detection have proposed a surprising hypothesis: The neutrino is the signature of an evaporating black hole. The team described their proposal in a paper that was uploaded to the arXiv database and has not been peer-reviewed yet.

    Hawking’s elephant-size black holes

    In the 1970s, Hawking realized that black holes aren’t entirely black. Instead, through complex interactions between the black hole event horizon and the quantum fields of space-time, they can emit a slow-but-steady stream of radiation, now known as Hawking radiation. This means black holes evaporate and eventually disappear. In fact, as the black hole gets smaller, it emits even more radiation, until it essentially explodes in a firestorm of high-energy particles and radiation — like the neutrino spotted by the KM3Net collaboration.

    Related: Stephen Hawking’s black hole radiation paradox could finally be solved — if black holes aren’t what they seem

    But all known black holes are very large — at least a few times the mass of the sun, and often significantly larger. It will take well over 10^100 years for even the smallest known black holes to die. If the KM3NeT neutrino is due to an exploding black hole, it has to be much smaller — somewhere around 22,000 pounds (10,000 kilograms). That’s about as heavy as two fully grown African elephants, compressed into a black hole smaller than an atom.

    The only known potential way to produce such tiny black holes is in the chaotic events of the early Big Bang, which may have flooded the cosmos with “primordial” black holes. The smallest primordial black holes produced in the Big Bang would have exploded long ago, while larger ones might persist to the present day.

    Get the world’s most fascinating discoveries delivered straight to your inbox.

    Unfortunately, a 22,000-pound black hole should not survive all the way from the Big Bang to the present day. But the authors pointed out that there might be an additional quantum mechanism — known as “memory burden” — that allows black holes to resist decay. This would allow a 22,000-pound black hole to survive for billions of years before it finally exploded, sending a high-energy neutrino toward Earth in the process.

    Primordial black holes might be an explanation for dark matter — the invisible substance that accounts for most of the matter in the universe — but so far, searches for them have turned up empty. This new insight may provide an intriguing clue. The researchers found that if primordial black holes of this mass range are abundant enough to account for all the dark matter, they should be exploding somewhat regularly. They estimated that if this hypothesis is correct, the KM3NeT collaboration should see another showstopping neutrino in the next few years.

    If that detection happens, then we may just have to radically rethink the way we approach dark matter, high-energy neutrinos and even the physics of the early universe.

    View Original Source Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    After 170 years, Thoreau’s river observations inform our changing climate

    May 8, 2025

    World’s first silicon-based quantum computer is small enough to plug into a regular power socket

    May 7, 2025

    Nothing is stronger than quantum connections – and now we know why

    May 7, 2025

    Astronomers observe the cooling process of a young stellar object following an accretion burst

    May 6, 2025

    ‘Titanic: The Digital Resurrection’ documentary sheds light on night ship sank

    May 6, 2025

    Ireland’s iconic megalithic tombs may have had an unexpected function

    May 5, 2025
    popular posts

    9 Albums Out This Week You Should Listen to Now

    Beer-Flavored Pringles Are a Thing; Here’s How to Find Them

    To Stay Sharp as You Age, Learn New Skills

    New York Taxi Drivers Hated Uber

    Christine Baranski Teases Agnes’ ‘Fall From Grace’ in Season 3

    Monica Ali on George Orwell, ‘Anna Karenina,’ and the Book

    Roger Waters Shares First Music From His Controversial ‘Dark Side

    Categories
    • Books (3,211)
    • Cover Story (2)
    • Events (18)
    • Fashion (2,380)
    • Interviews (41)
    • Movies (2,510)
    • Music (2,788)
    • News (153)
    • Science (4,361)
    • Technology (2,502)
    • Television (3,233)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT