Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»Epigenetic landscape modulates pioneer transcription factor binding
    Science

    Epigenetic landscape modulates pioneer transcription factor binding

    By AdminJuly 6, 2023
    Facebook Twitter Pinterest LinkedIn Tumblr Email
    Epigenetic landscape modulates pioneer transcription factor binding

    Like thread tightly wrapped around a spool, DNA is wrapped around histones and packaged into structures called nucleosomes. Scientists at St. Jude Children’s Research Hospital are exploring how a type of transcription factor called a pioneer transcription factor accesses DNA even when it is tightly wound. Their work revealed how the epigenetic landscape influences transcription factor binding. Problems with transcription have been implicated in numerous cancers, so this more detailed understanding of the process may aid in developing future therapeutics. The study was published today in Nature.

    The nucleosome packaging of DNA can physically block transcription factors that regulate gene expression from accessing their binding sites. Restricting access to DNA is an integral part of how transcription is regulated. However, pioneer transcription factors can bind to their target piece of DNA even within compacted chromatin and are also known to promote the binding of other transcription factors.

    Among pioneer transcription factors are the so-called Yamanaka factors which include Oct4 and are used to induce pluripotency (the ability to give rise to different cell types). How pioneer transcription factors access tightly wound DNA was unclear. To better understand the process, scientists at St. Jude used cryo-electron microscopy (cryo-EM) and biochemistry to investigate how Oct4 interacts with nucleosomes.

    “Building on prior work to understand the dynamic behavior of nucleosomes, we wanted to understand how other factors might utilize those dynamic changes to access chromatin,” said corresponding author Mario Halic, Ph.D., St. Jude?Department of Structural Biology. “Oct4 did not bind where we anticipated it might — rather than binding inside the nucleosome, we found that it bound a little bit outside.”

    “One of the main findings is that epigenetic modifications can affect transcription factor binding and cooperativity,” Halic added. “The existing epigenetic state of chromatin can determine how transcription factors will cooperatively bind to chromatin.”

    The epigenetic impact

    Results show that the first Oct4 molecule binding “fixes” the nucleosome in a position that increases the exposure of other binding sites, thus promoting the binding of additional transcription factors and explaining transcription factor cooperativity.?They also found that Oct4 contacts histones, and these interactions promote chromatin opening and influence cooperativity. Their work also showed that modifications at histone H3K27 affect the positioning of DNA by Oct4. These findings explain how the epigenetic landscape can regulate Oct4 activity to ensure proper cell programming.

    Notably, the researchers used endogenous human DNA sequences instead of artificial sequences to assemble their nucleosomes. This allowed them to study the dynamic nature of the nucleosome, despite it being more challenging to work with.

    “In this work, we used real genomic DNA sequences to study transcription factors in the context of where they function,” said first author Kalyan Sinha, Ph.D., St. Jude Department of Structural Biology. “This strategy allowed us to discover that the first binding event of Oct4 positions the nucleosomal DNA in a manner that allows cooperative binding of additional Oct4 molecules to internal sites. In addition, we observed exciting interactions with histone tails and have seen that histone modifications can alter those interactions. Together, these findings provide new insights into the pioneering activity of Oct4.”

    “Histone modifications affect how DNA is positioned and how transcription factors can bind cooperatively,” Sinha added, “which means in cells, if you have the same DNA sequence, different epigenetic modifications can result in different, combinatorial effects on transcription factor binding.”

    Read The Full Article Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Tuvalu residents prepare for world’s first planned migration of an entire nation — and climate change is to blame

    July 18, 2025

    AI demand could drive up US electricity bills – even if it fizzles

    July 18, 2025

    International study shows impact of social media on young people

    July 17, 2025

    Best spotting scopes in 2025 for birdspotting and wildlife watching

    July 17, 2025

    How human eggs stay fresh for decades

    July 16, 2025

    Lost English legend decoded, solving Chaucerian mystery and revealing a medieval preacher’s meme

    July 16, 2025
    popular posts

    Human-like robot tricks people into thinking it has a mind

    Nothing Phone 1 Price Allegedly Revealed on Amazon Germany Website

    Warner Music Group Discloses Compensation for Incoming CEO Robert Kyncl

    Wolf Alice Is Teasing a Comeback, and It Could Be Band’s Biggest Era Yet

    Jeza Belle Guests On TriVersity Talk With Host Wendy Stuart 7 PM ET Wednesday January 8th, 2025

    I Searched Through Thousands of Summer Dresses—These 40 Impressed Me

    Gnomeo & Juliet: Where to Watch & Stream Online

    Categories
    • Books (3,295)
    • Cover Story (5)
    • Events (19)
    • Fashion (2,455)
    • Interviews (43)
    • Movies (2,594)
    • Music (2,874)
    • News (155)
    • Politics (2)
    • Science (4,444)
    • Technology (2,587)
    • Television (3,317)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT