Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»New evidence of biochemical states and force working in concert
    Science

    New evidence of biochemical states and force working in concert

    By AdminDecember 10, 2022
    Facebook Twitter Pinterest LinkedIn Tumblr Email

    Inside the leading edge of a crawling cell, intricate networks of rod-like actin filaments extend toward the cell membrane at various angles, lengthening protein by protein. Upon impact, the crisscrossing rods glance off the membrane and bend as the collective force of myriad filaments pushes the cell forward.

    How flexible these filaments are, and how effectively they recruit essential regulatory proteins to their cause, depends on the properties of the individual actin proteins composing them. Now, a new study in Nature provides high-resolution structures showing how two key biochemical states of actin work jointly with bending forces to determine how actin can interact with other proteins.

    “When you add force to the mix, you see substantial changes,” says Rockefeller’s Gregory Alushin. “We provide clear evidence that these biochemical changes in actin are only readable through the mechanical properties of the filaments.”

    Revisiting protein control

    Actin filaments are long polymers of actin proteins, linked end to end. Actin proteins within a filament can exist in one of two important biochemical states. Actin newly added to the polymer contains a phosphate molecule and aged actin does not; otherwise, the two states are more or less identical. But actin-binding proteins can tell them apart, and they will bind or ignore a filament based on the state of its actin.

    How actin-binding proteins distinguish between these states is a long-standing mystery. Some have proposed that phosphate somehow changes the shape of actin, allowing actin-binding proteins to pick it out of the crowd in vivo. Indeed, many enzymes can switch between shapes when other molecules latch onto them, in a process known as allosteric regulation. It made some sense to assume that actin would be no different.

    advertisement

    But without knowing exactly what the two biochemical states of actin looked like, this was merely a guess. Alushin wondered whether there might be more to the story. “How proteins are controlled is an old question,” he says. “It had been a while since new ideas had been explored.”

    Methodological leaps forward

    Matthew Reynolds, a graduate student in Alushin’s lab, began working on high-resolution structures of each state. Upon examining these structures, where bound phosphate and water molecules were clearly resolved, the team found that the two actin states were still effectively indistinguishable. Whether or not actin was bound to phosphate, the structures featured nearly identical filament lattices and protein backbones. Had standard allosteric regulation been involved, there would have been marked changes in actin when it was bound to phosphate — the sort of major differences that regulatory proteins could have used to distinguish one type of actin from another. But the differences observed seemed far too minor for actin-binding proteins to be able to tell them apart.

    In search of an alternate explanation, the team developed a machine learning approach to find the relatively small number of bent filaments in their cryo-electron microscopy images in order to analyze their structures. They then determined structures of bent filaments in both biochemical states, where the scale of bending matched that found in cells when filaments glance off the membrane during locomotion. “Developing a way to capture this subset of images was crucial,” Alushin says. “This was a case where a methodological advance was needed for the scientific advance.”

    When bent, actin that contained phosphate looked very different from actin without phosphate, such that actin-binding proteins would be able to easily distinguish between the two states. “The change in the biochemical state of the filament biases the ways in which the filament can deform when force is applied,” Reynolds says.

    A new model began to emerge: while an actin protein in a filament can flex in many ways when the polymer bends, that flexibility is limited when a phosphate cramps its style. Imagine a flexible tube containing little donuts, side by side. Some of the donuts have open holes, others have golf balls in their holes, but they are otherwise identical. When the tube bends, the donuts will all squish and change shape, but those with golf balls will deform differently than the others.

    Similarly, the two states of actin are essentially indistinguishable before the filament bends but, once force is applied, those with phosphate squish differently than those without it. “What will matter is the deformability of the protein,” Alushin says. “If there’s a hole in the middle, it can flex in one way. If you fill that hole with phosphate, it won’t be able to squish in the same way.”

    The results explain how actin-binding proteins can distinguish between biochemical states of actin, and they reveal a model of protein regulation that involves biochemical states and force working in concert. In future studies, Alushin hopes to investigate whether other proteins are similarly co-regulated.

    “Our study of actin is a first glimpse into this phenomenon, but one limitation right now is that we don’t have structures of other force-responsive proteins in action,” he says. “It would be worthwhile looking into these proteins as it becomes technically possible to do so.”

    Read The Full Article Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Using drones to safeguard our forests

    July 20, 2025

    Best sleep trackers 2025: From smart rings to Garmin watches

    July 20, 2025

    Your chance of having a boy or girl may not be 50/50

    July 19, 2025

    Crustal faulting generates key energy sources, study shows

    July 19, 2025

    Tuvalu residents prepare for world’s first planned migration of an entire nation — and climate change is to blame

    July 18, 2025

    AI demand could drive up US electricity bills – even if it fizzles

    July 18, 2025
    popular posts

    Camille and Clément Ducol’s “El Mal” Wins Best Original Song at 2025 Golden Globes

    ‘Goosebumps’ Gets New Disney+ Series With First Trailer

    14 Swimsuits Designed to Accentuate All Your Curves

    New Literary Fiction Book Recommendations

    The 25 Best Prime Day Skin Care Deals Happening Right

    We’re Putting It Out There—These Halloween Nail Designs Are Actually

    “Anything Could Happen” by Go time

    Categories
    • Books (3,299)
    • Cover Story (5)
    • Events (19)
    • Fashion (2,458)
    • Interviews (43)
    • Movies (2,598)
    • Music (2,877)
    • News (155)
    • Politics (2)
    • Science (4,448)
    • Technology (2,591)
    • Television (3,321)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT