Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»Ancient viral DNA in human genome guards against infections
    Science

    Ancient viral DNA in human genome guards against infections

    By AdminNovember 27, 2022
    Facebook Twitter Pinterest LinkedIn Tumblr Email

    Viral DNA in human genomes, embedded there from ancient infections, serve as antivirals that protect human cells against certain present-day viruses, according to new research.

    The paper, “Evolution and Antiviral Activity of a Human Protein of Retroviral Origin,” published Oct. 28 in Science, provides proof of principle of this effect.

    Previous studies have shown that fragments of ancient viral DNA — called endogenous retroviruses — in the genomes of mice, chickens, cats and sheep provide immunity against modern viruses that originate outside the body by blocking them from entering host cells. Though this study was conducted with human cells in culture in the lab, it shows that the antiviral effect of endogenous retroviruses likely also exists for humans.

    The research is important because further inquiry could uncover a pool of natural antiviral proteins that lead to treatments without autoimmune side effects. The work reveals the possibility of a genome defense system that has not been characterized, but could be quite extensive.

    “The results show that in the human genome, we have a reservoir of proteins that have the potential to block a broad range of viruses,” said Cedric Feschotte, professor of molecular biology and genetics in the College of Agriculture and Life Sciences. John Frank, Ph.D. ’20, a former graduate student in Feschotte’s lab and now a postdoctoral researcher at Yale University, is the study’s first author.

    Endogenous retroviruses account for about 8% of the human genome — at least four times the amount of DNA that make up the genes that code for proteins. Retroviruses introduce their RNA into a host cell, which is converted to DNA and integrated into the host’s genome. The cell then follows the genetic instructions and makes more virus.

    advertisement

    In this way, the virus hijacks the cell’s transcriptional machinery to replicate itself. Typically, retroviruses infect cells that don’t pass from one generation to the next, but some infect germ cells, such as an egg or sperm, which opens the door for retroviral DNA to pass from parent to offspring and eventually become permanent fixtures in the host genome.

    In order for retroviruses to enter a cell, a viral envelope protein binds to a receptor on the cell’s surface, much like a key into a lock. The envelope is also known as a spike protein for certain viruses, such as SARS-CoV-2.

    In the study, Frank, Feschotte and colleagues used computational genomics to scan the human genome and catalog all the potential retroviral envelope protein-coding sequences that may have retained receptor binding activity. Then they ran more tests to detect which of these genes were active — that is, expressing retroviral envelope gene products in specific human cell types.

    “We found clear evidence of expression,” Feschotte said, “and many of them are expressed in the early embryo and in germ cells, and a subset are expressed in immune cells upon infection.”

    Once the researchers had identified antiviral envelope proteins expressed in different contexts, they focused on one, Suppressyn, because it was known to bind a receptor called ASCT2, the cellular entry point for a diverse group of viruses called Type D retroviruses. Suppressyn showed a high level of expression in the placenta and in very early human embryonic development.

    advertisement

    They then ran experiments in human placental-like cells, as the placenta is a common target for viruses.

    The cells were exposed to a type D retrovirus called RD114, which is known to naturally infect feline species, such as the domestic cat. While other human cell types not expressing Suppressyn could be readily infected, the placental and embryonic stem cells did not get infected. When the researchers experimentally depleted placental cells of Suppressyn, they became susceptible to RD114 infection; when Suppressyn was returned to the cells, they regained resistance.

    In addition, the researchers did reverse experiments, using an embryonic kidney cell line normally susceptible to RD114. The cells became resistant when the researchers experimentally introduced Suppressyn into these cells.

    The study shows how one human protein of retroviral origin blocks a cell receptor that allows viral entry and infection by a broad range of retroviruses circulating in many non-human species. In this way, Feschotte said, ancient retroviruses integrated into the human genome provide a mechanism for protecting the developing embryo against infection by related viruses.

    Future work will explore the antiviral activity of other envelope-derived proteins encoded in the human genome, he said.

    Co-authors include Carolyn Coyne, a virologist at Duke University’s School of Medicine, and Jose Garcia-Perez, a molecular biologist at the University of Granada, Spain.

    The study was funded by Cornell, the National Institutes of Health, the Wellcome Trust-University of Edinburgh Institutional Strategic Support Fund, the European Research Council and the Howard Hughes Medical Institute.

    Read The Full Article Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Solar drone with wingspan wider than jumbo jet could fly for months

    July 27, 2025

    Hidden black and white feathers found to intensify blue and yellow bird plumage

    July 26, 2025

    Science news this week: Wolves help restore trees in Yellowstone and the largest interstellar object ever seen

    July 26, 2025

    Major carbon sink may have vanished for a second year in a row

    July 25, 2025

    Clues for dinosaurs’ diets found in the chemistry of their fossil teeth

    July 25, 2025

    3I/ATLAS is 7 miles wide — the largest interstellar object ever seen — new photos from Vera C. Rubin Observatory reveal

    July 24, 2025
    popular posts

    ‘Willow’ Series Debuts on Disney Plus

    Elon Musk Faces US SEC Probes Over Tesla Share Sales:

    Interview with Anastasia Alexander, Author of Dodging Mr. Right

    Astronomers find distant gas clouds with leftovers of the first

    Brooke Shields, Emeraude Toubia, Bobbi Brown, and More Partner to

    Human brain organoids respond to visual stimuli when transplanted into

    14 New November Book Club Picks, From GMA Book Club

    Categories
    • Books (3,312)
    • Cover Story (5)
    • Events (19)
    • Fashion (2,466)
    • Interviews (43)
    • Movies (2,611)
    • Music (2,890)
    • News (155)
    • Politics (3)
    • Science (4,461)
    • Technology (2,605)
    • Television (3,335)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT