Close Menu
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    TopBuzzMagazine.com
    Facebook X (Twitter) Instagram Pinterest YouTube LinkedIn TikTok
    • Home
    • Movies
    • Television
    • Music
    • Fashion
    • Books
    • Science
    • Technology
    • Cover Story
    • Contact
      • About
      • Amazon Disclaimer
      • Terms and Conditions
      • Privacy Policy
      • DMCA / Copyrights Disclaimer
    TopBuzzMagazine.com
    Home»Science»Which COVID Studies Pose a Biohazard?
    Science

    Which COVID Studies Pose a Biohazard?

    By AdminNovember 18, 2022
    Facebook Twitter Pinterest LinkedIn Tumblr Email

    When researchers at Boston University (BU) in Massachusetts inserted a gene from the Omicron variant of SARS-CoV-2 into a strain of the virus from the beginning of the pandemic, they were trying to understand why Omicron causes mild disease.

    But the experiments, described in a 14 October preprint, have ignited a red-hot controversy over what constitutes truly risky SARS-CoV-2 research—especially now that much of the world’s population has some immune protection from the virus and COVID-19 treatments are available.

    At issue is whether—and when—researchers modifying SARS-CoV-2 or other deadly pathogens need to keep regulators and funding agencies such as the US National Institutes of Health (NIH) informed about their work, even if the agencies didn’t fund the experiments in question. Studies that make pathogens more transmissible or virulent are sometimes called ‘gain of function’ research.

    The controversy sparked by the BU study highlights “the lack of clarity that people have on exactly what sorts of experiments have benefits that outweigh risks, and who decides how it’s all reviewed”, says Jesse Bloom, an evolutionary virologist at the Fred Hutchinson Cancer Center in Seattle, Washington.

    “Some guidance is really needed,” says Pei-Yong Shi, a virologist at the University of Texas Medical Branch at Galveston, whose team is seeking permission from the NIH to study whether SARS-CoV-2 can develop resistance to antiviral drugs the group is developing.

    Spike study

    The brouhaha over the BU research started after a team led by Mohsan Saeed, a virologist at BU’s School of Medicine, posted a preprint on bioRxiv showing that the properties of Omicron’s spike protein—the part of the virus that allows it to infect human cells—might not explain the clinical mildness of the COVID-19 cases it causes. Saeed’s team had created a new strain of SARS-CoV-2 by putting the spike protein from the Omicron BA.1 lineage into the backbone of a viral strain isolated in the early days of the pandemic.

    Unlike BA.1, which usually causes mild, non-fatal disease, this strain caused severe disease in mice engineered to be susceptible to SARS-CoV-2 infection. Eight of the ten mice exposed to the strain died or had to be killed as a result of weight loss and other consequences of the infection. However, that wasn’t quite as lethal as the unaltered ancestral SARS-CoV-2 strain, which killed all six mice that were infected in the study.

    This research is valuable because it suggests that the factors that make certain strains of SARS-CoV-2 deadly might lie outside the spike protein, says David Ho, a virologist at Columbia University in New York City. “But it raises concerns that we have an Omicron virus that’s evasive to many antibodies and yet is more pathogenic than the current version of Omicron.”

    The work had been approved by a BU biosafety committee, as well as a Boston city public-health board, and was conducted in a biocontainment facility deemed safe for work with SARS-CoV-2. But it is unclear whether the BU study has run afoul of any rules governing risky pathogen research. Under current guidelines, any research funded by the US Department of Health and Human Services (HHS)—of which the NIH is part—that can be “reasonably anticipated” to make a potential pandemic pathogen (PPP) more virulent or transmissible should undergo extra review.

    Saeed’s team acknowledged grants from the National Institute of Allergy and Infectious Diseases (NIAID) and other branches of the NIH in the preprint. But in a statement this week, BU said that the experiments “were carried out with funds from Boston University”, which it said means that they are exempt from the additional review. NIAID’s support was acknowledged “because it was used to help develop the tools and platforms that were used in this research; they did not fund this research directly”, said the university.

    On the spectrum of coronavirus research, the experiments are relatively low-risk, Bloom says. The hybrid virus is derived from two strains that have been out-competed by successive variants, so it would be unlikely to spread widely if it ever escaped. Shi points out that the virus the researchers created is less pathogenic than the ancestral strain, which laboratories around the world continue to work with.

    “This type of work needs to be reviewed carefully, and it needs to undergo risk–benefit assessments. But I would not put this in sort of the category of the most alarming types of coronavirus studies,” says Bloom. “It seems exceedingly unlikely that this virus would have pandemic potential.”

    In a statement, the NIH said that it did not fund the specific experiments reported in the preprint, and it is looking into whether the research still fell under its oversight.

    Communication key

    Shi says that in his experience, regular communication between researchers, funders and local biosafety committees can prevent problems and misunderstandings of the kind surrounding the BU study. After such discussions, his team created similar strains to study variants’ ability to evade vaccines that are made with a weakened form of SARS-CoV-2.

    When Luis Martinez-Sobrido and Chengjin Ye, virologists at the Texas Biomedical Research Institute in San Antonio, wanted to conduct experiments nearly identical to those described by Saeed’s team, they contacted NIAID, which was supporting the researchers through an existing grant.

    NIAID and the researchers’ institutional biosafety committee both gave the green light to the work—with the proviso that if any of the changes significantly enhanced the pathogenicity of the strain in animals or its capacity to replicate in cells, the researchers would halt the work and quickly inform the funder. Martinez says his obligations are clear.

    Ho’s lab, which also receives NIH funding, has been one of the world leaders in studying SARS-CoV-2 during the pandemic. Ho says it wasn’t always clear what research was subject to review and what wasn’t, and he found himself frequently checking in with officials. When his team reported privately funded work showing that SARS-CoV-2 can evolve resistance to a component of the antiviral treatment Paxlovid, NIAID officials got in touch to confirm that the experiments didn’t fall under its oversight.

    In another instance, Ho’s team was growing the virus in the presence of monoclonal antibody drugs, to study its ability to evolve resistance. The studies identified a host of antibody-dodging mutations that would later emerge in Omicron offshoots, including a sublineage called BQ.1 that is likely to drive an infection wave later this year.

    But Ho says he scaled back the research and decided not to publish the findings, because of his concerns about how officials at NIAID would perceive the work if it were made public. The agency didn’t fund those experiments, but supported related work characterizing SARS-CoV-2 variants. “There’s a lot of valuable information that could have been shared, but because of these concerns, that was held back,” Ho says.

    Better guidance

    The discussion around the BU preprint comes amid a years-long effort to revise the US government’s funding guidelines for research involving enhanced PPPs (ePPPs). In February, the NIH asked the US National Science Advisory Board for Biosecurity (NSABB) to revisit its current policy, which was set in 2017. The NSABB released draft recommendations in September, and plans to release its final report late this year or early next. One recommendation calls for a significant expansion in the pathogens that could fall under the policy.

    Marc Lipsitch, an epidemiologist at the Harvard T.H. Chan School of Public Health in Boston, says that the draft recommendations provide more clarity, but do not address the fundamental concerns that the BU study raises. The final policy should cover any ePPP research done at any US institution—not just research funded by HHS—and should allow for the additional review step to occur if potential for an ePPP to be created becomes apparent, even after the project is funded, he says.

    Researchers hope that the update will provide clearer direction on which SARS-CoV-2 research needs NIH approval, and how the agency conducts its extra review. As Shi and his team develop COVID-19 antivirals, he would like to study how readily the virus can evolve mutations to evade drugs, and whether mutations linked to existing drugs can foil new ones. But he says that he has not yet received clear guidance from the NIH on what experiments he can and cannot do.

    In some cases, discussions seem to be driven by publicity surrounding experiments such as the BU study, instead of by considerations of the potential risks and benefits of such work, says Bloom. The latest controversy highlights the disconnect between how scientists and the public perceive the risk of research into certain pathogens, he adds. “It’s important for scientists to recognize it’s the general public that’s funding all this research. And there are good reasons that people want more transparency and understanding.”

    This article is reproduced with permission and was first published on October 21 2022.

    Read The Full Article Here

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Crustal faulting generates key energy sources, study shows

    July 19, 2025

    Tuvalu residents prepare for world’s first planned migration of an entire nation — and climate change is to blame

    July 18, 2025

    AI demand could drive up US electricity bills – even if it fizzles

    July 18, 2025

    International study shows impact of social media on young people

    July 17, 2025

    Best spotting scopes in 2025 for birdspotting and wildlife watching

    July 17, 2025

    How human eggs stay fresh for decades

    July 16, 2025
    popular posts

    Oldest army ant found in 35-million-year-old Baltic amber

    Samsung Galaxy S23 Ultra Updated Renders Show Rounded Corners, Thinner

    Creepy, Scary Halloween Comics and Graphic Novels to Read Now

    Summary, Spoilers + Review: The Perfect Son by Freida McFadden

    Demon Slayer Swordsmith Village Arc Trailer Previews Anime Return

    Barbiecore Fashion Is This Summer’s Hottest Trend — Here’s How

    Fanatic Feed: Last of Us Casts Abby, Our Flag Means

    Categories
    • Books (3,296)
    • Cover Story (5)
    • Events (19)
    • Fashion (2,456)
    • Interviews (43)
    • Movies (2,595)
    • Music (2,874)
    • News (155)
    • Politics (2)
    • Science (4,445)
    • Technology (2,588)
    • Television (3,318)
    • Uncategorized (932)
    Archives
    Facebook X (Twitter) Instagram Pinterest YouTube Reddit TikTok
    © 2025 Top Buzz Magazine. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    Do not sell my personal information.
    Cookie SettingsAccept
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT